Contents & References of Analysis of different fin profiles with temperature-dependent thermal conduction with analytical methods
List:
List
1 Chapter One. 3
1-1 Introduction. 4
1-2 Types of fins. 4
1-3 Application of fins 5
1-4 Background of the subject. 7
2 Chapter Two. 10
2-1 Galerkin method: 11
2-1-1 Definition: 11
2-1-2 Work done with Galerkin method: 12
2-2 Collocation method: 12
2-2-1 Definition: 12
2-2-2 Work done: 13
2-3 Least squares method: 13
2-3-1 Definition: 13
2-3-2 Work done: 14
2-4 Differential transformation method: 15
2-4-1 Definition: 15
2-4-2 Work done: 17
2-5 Adomian analysis method: 18
2-5-1 Definition: 18
2-5-2 Work done: 19
2-6 Optimization and design of experiment by response surface method. 20
3 The third chapter. 21
3-1 Temperature dependent thermal conductivity coefficient: 22
3-1-1 Dimensioning: 23
3-1-2 Rectangular fin: 24
3-1-3 Projection fin: 25
3-1-4 Convex fin: 25
3-1-5 Boundary conditions: 26 3-2 Temperature-dependent heat transfer coefficient: 27 3-3 With internal heat generation: 29 30
3-4 Annular fin with different profiles: 31
3-5 The fourth chapter. 46
4-1 Fin with dependent conductivity coefficient. 47
4-1-1 rectangular fin: 47
4-1-2 horizontal fin. 51
4-1-3 Convex fin. 55
4-1-4 Differential transformation method (DTM): 65
4-1-5
4-1-5
4-3-1 First state of constant thermal coefficient and internal generated heat depending on temperature: 88
4-3-2 Second state of thermal coefficient and internal generated heat depending on temperature: 91
4-4 Circular fin with different profiles: 96
4-5 Porous fin with triangular cross section:
4-6 Radial fin Along with radiant heat transfer: 110
4-7 Wet fin: 115
4-8 Longitudinal fin in transient state: 120
5 Chapter Five. 125
5-1 Summarizing the results: 126
5-2 Presenting suggestions. 127
6 References. 128
Source:
[1] G. B. Shelly, M. E. Vermaat, j. J. Quasney, Discovering Computers, Course Technology, 2009. A. Aziz, A. B. Green, Performance and optimum design of convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base, Vol. 50, pp. 2622-2631. 2009. [3] A. Aziz, F. Khani, Convection–radiation from a continuously moving fin of variable thermal conductivity, Vol. 348, pp. 640-651, 2011. [4] C. Arslanturk, International Communications in Heat and Mass Transfer, No. 8, PP. 364, pp 33-37.Bouaziz, A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Conversion and Management, Vol. 52, No. 8-9, pp. 2876-2882, 2011.
[7] G. Domairry, M. Fazeli, Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, pp. 489-499, 2009.
[8] D. D. Ganji, Z. Z. Ganji, H. D. Ganji, Determination of temperature distribution for annual fins with temperature-dependent thermal conductivity by HPM, Therm Sci, Vol. 15, pp. 111–5, 2011.
[9] M. N. Bouaziz, S. Rechak, S. Hanini, Y. Bal, K. Bal, Etude des transferts de chaleur non linéaires dans les ailettes longitudinales, International Journal of Thermal Sciences, Vol. 40, No. 9, pp. 843-857, 2001.
[10] S. Kiwan, Effect of radiative losses on the heat transfer from porous fins, International Journal of Thermal Sciences, Vol. 46, No. 10, pp. 1046-1055, 2007.
[11] S. Saedodin, S. Sadeghi, Temperature distribution in long porous fins in natural convection conditions, Middle-East J Sci Res, Vol. 7, pp. 812, 2013.
[12] M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, International Journal of Thermal Sciences, Vol. 55, No. 0, pp. 69-75, 2012.
[13] M. Hatami, D. D. Ganji, Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis, International Journal of Refrigeration, Vol. 40, No. 0, pp. 140-151, 2014.
[14] M. Hatami, D. D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method, Energy Conversion and Management, Vol. 78, No. 0, pp. 347-358, 2014.
[15] M. Hatami, D. D. Ganji, Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4), Ceramics International, Vol. 40, No. 5, pp. 6765-6775, 2014.
[16] M. Hatami, D. D. Ganji, Thermal performance of circular convective-radiative porous fins with different section shapes and materials, Energy Conversion and Management, Vol. 76, No. 0, pp. 185-193, 2013.
[17] J. L. Threlkeld, Thermal environmental engineering Englewood Cliffs, 1970.
[18] F. C. McQuiston, Fin efficiency with combined heat and mass transfer, ASHRAE Trans Vol. 81, pp. 350-355, 1975.
[19] A. H. Elmahdy, R. C. Biggs, Efficiency of extended surfaces with simultaneous heat and mass transfer, ASHRAE Trans, Vol. 30, pp. 135–143, 1988.
[20] A. Kilic, K. onat, The optimum shape for convecting rectangular fins when condensation occurs, Warme Stoffubertrag, Vol. 15, pp. 125-133, 1981.
[21] M. H. Sharqawy, S. M. Zubair, Efficiency and optimization of an annular fin with combined heat and mass transfer – an analytical solution, Int J Refrigerat, Vol. 30, pp. 751-7, 2007.
[22] D. Ganji, M. Rahgoshay, M. Rahimi, Numerical Investment of fin Efficiency and Temperture distribution of conductive, convective and radiative fins, IGRRAS, 2010.
[23] A. Horvat, B. Mavko, Calculation of conjugate heat transfer problem with volumetric heat generation using the Galerkin method, Applied Mathematical Modeling, Vol. 29, No. 5, pp. 477-495, 2005.
[24] I. Rahimi Petroudi, D. D. Ganji, M. Khazayi Nejad, J. Rahimi, E. Rahimi, A. Rahimifar, Transverse magnetic field on Jeffery–Hamel problem with Cu–water nanofluid between two non parallel plane walls by using collocation method, Case Studies in Thermal Engineering, Vol. 4, No. 0, pp. 193-201, 2014.