Contents & References of Numerical simulation of carbon nanotube energy absorption capability under ballistic impact
List:
Chapter 1: Introduction. 1
Chapter 2: Review of previous studies. 7
2-1 Introduction. 8
2-2 previous studies. 9
2-2-1 Parvaneh et al.(2009) 9
2-2-2 Parvaneh and Shariati(2010) 10
2-2-3 Khalili and Haqbin(2012) 11
2-2-4 Zhang and Milvagnam(2006) 12
2-2-5 Zhang and Milvagnam(2007) 13
Chapter 3: Carbon nanotube. 15
3-1 Introduction. 16
3-2 Discovery of carbon nanotube. 16
3-3 Carbon nanotube structure. 17
3-4 interactions and potentials in carbon nanotubes. 20
3-4-1 bond tension interaction. 21
3-4-2 Interaction of angular bending of the bond (angle change) 22
3-4-3 Interaction of biplane twisting. 23
3-4-4 out-of-plane torsion interaction. 23
3-4-5 van der Waals interaction. 24
3-4-6 electrostatic interaction. 25
3-5 characteristics of carbon nanotubes. 26
3-6 Carbon nanotube modeling. 27
3-6-1 Introduction. 27
3-6-2 Molecular modeling. 28
3-6-2-1 Molecular dynamics method. 29
3-6-2-2 basic methods. 30
3-6-3 continuous modeling. 31
3-6-4 structural mechanics modeling. 31
3-6-4-1 Odegaard model. 32
3-6-4-2 Lee and Chu model. 33
3-6-4-3 Hu model. 34
3-6-4-4 Mao and Russian models. 35
3-6-4-5 new structural model. 36
Chapter 4: Mechanical behavior of carbon nanotube under impact. 43
4-1 Introduction. 44
4-2 Impact simulation on carbon nanotube. 45
4-2-1 checking the accuracy of the model and simulation. 50
4-2-2 bullet angle. 60
4-2-3 carbon nanotube diameter. 66
4-2-4 carbon nanotube length. 69
4-2-5 types of carbon nanotubes. 72
4-2-6 Effect of defects on the mechanical behavior of carbon nanotubes under impact. 76
4-2-7 bullet geometry. 84
4-2-8 Investigating the effect of modeling error in the current research. 89
Chapter 5: Conclusion and suggestions. 91
5-1 Conclusion. 92
5-2 suggestions. 93
References.
Source:
[1] www.iran-eng.com
[2] Ashcroft J, Daniels D.J and Hart S.V. (2001) "Selection and Application Guide to Personal Body Armor" The National Institute of Justice's National Law Enforcement and Corrections Technology Center, pp. 1. [3] www.rutex.ir. [4] Iijima S. (1991). "Helical microtubes of graphitic carbon" Nature, Vol. 354, pp. 56-58.
[5] Odegard G.M, Gates, T.S, Nicholson L.M, Wise K.E. (2002) "Equivalent-continuum modeling with application to carbon nanotubes", Composites Science and Technology., Vol. 62, pp. 1869-1880. [6] Parvaneh, 1388, master's thesis, "Modeling and simulation of carbon nanotubes in order to predict its mechanical properties", Faculty of Mechanics, Shahrood University of Technology. [7] Ajayan P M 1999Chem. Rev.991787.
[8] Parvaneh V, Shariati M, Majd Sabeti A.M. (2009) "Investigation of vacancy defects effects on the buckling behavior of SWCNTs via a structural mechanics approach", European Journal of Mechanics A/Solids, Vol. 28, pp. 1072–1078.
[9] Parvaneh V, Shariati M. (2010) "Effect of defects and loading on prediction of Young's modulus of SWCNTs", Acta Mech, Vol. 216, pp. 281–289.
[10] Khalili S.M.R, Haghbin A. (2012) “Investigation on Design Parameters of Single-walled Carbon nanotube Reinforced Nanocomposites under Impact Loads”, Composite Structures.
[11] Zhang L.C, Mylvaganam K. (2006) “Energy absorption capacity of carbon nanotubes under ballistic impact”, Applied Physics letters, Vol. 89, No. 123127, pp.1-3
[12] Zhang L.C, Mylvaganam K. (2007) "Ballistic resistance capacity of carbon nanotubes", Nanotechnology, Vol. 18, No. 475701, pp. 1-4.
[13] Hugh O.P. (2004) "Handbook of Carbon, Graphite, Diamond and Fullerenes", Vol. 1, Consultant and Sandia National Laboratories, New Mexico, pp. 12-36.
[14] Mantell C. L. (1968) "Carbon and Graphite Handbook", Interscience, New York, pp. 132-141. [15] Kalamkarov A.L, Georgiades A.V, Rokkam S.K, Veedu V.P, Ghasemi-Nejhad.P, Ghasemi-Nejhad M.N. (2006) "Analytical and numerical techniques to predict carbon nanotubes properties", International Journal of Solids and Structures, Vol. 43, pp. 6832–6854.
[16] Kroto H.W, Heath J.R, O'Brien S.C, Curl, R.F, Smalley R.E, (1985) “C60: Buckminsterfullerene”, Nature, Vol. 318, No. 6042, pp. 162-163
[17] Belytschko T, Xiao S.P, Schatz G.C, Ruoff R.S (2002) "Atomistic simulations of nanotube fracture", Physical Review B, Vol. 65, pp. 235-430.
[18] Cornell W.D, Cieplak P, Bayly C.I (1995) "A second generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules", Journal of American Chemical Society, Vol. 117, pp. 5179–5197.
[19] Mayo S.L, Olafson B.D, Goddard W.A (1990) “Dreiding––a generic force-field for molecular simulations”, Journal of Physical Chemistry, Vol. 94, pp. 8897–8909.
[20] Rappe A.K, Casewit C.J, Colwell K.S (1992) “A full periodic-table force-field for molecular mechanics and molecular dynamics simulations”, Journal of American Chemical Society, Vol. 114, pp. 10024–10035. [21] Li C.Y. and Chou T.W, (2003) "Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces", Compus. Sci. Technol, Vol. 63, pp. 1517– 1524.
[22] Li C.Y, Chou T.W, (2004). "Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach" Mech. Mater, Vol. 36, pp. 1047–55.
[23] Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, Rodney S. Ruoff, (2000) ``Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load'', Science, Vol. 287. No. 5453, pp. 637-640.
[24] Tersoff J. (1992) "Energies of fullerenes", Vol. 15546. 2511-2514. [26] "Effective bending stiffness of carbon nanotubes", pp. 9973-9976 to estimate the properties of nanotubes", Vol. 110, pp. 227-230. [28] Zhang P, Huang Y, Hwang K.C. (2002) "Fracture nucleation in single-wall carbon nanotubes under tension", J. Appl. Mech., Vol. 69, pp. 454–458.
[29] Li C.Y, Chou T.S. (2003) "A structural mechanics approach for the analysis of carbon nanotubes", International Journal of Solids and Structures, Vol. 40, pp. 2487–2499.
[30] Hu N, Fukunaga H, Lu C, Kameyama M, Yan B. (2005) “Prediction of elastic properties of carbon nanotube-reinforced composites”, Mathematical and Physical Sciences., Vol. 461, pp. 1685–1710.
[31] Hu N, Nunoya K, Pan D, Okabe T, Fukunaga H. (2007) “Prediction of buckling characteristics of carbon nanotubes”, International Journal of solids and structures., Vol. 44, pp. 6535-6550.
[32] Wang Q, Liew K.M, Duan W.H. (2008) "Modeling of the mechanical instability of carbon nanotubes", Carbon, Vol. 46, pp. 285-290.
[33] Meo M, Rossi M. (2006), "Tensile failure prediction of single wall carbon nanotube", Engineering Fracture Mechanics., Vol. 73, pp. 2589-2599.
[34] ABAQUS user's manual, (2011), version 6.11.3.
]35[ Mahmoud Shakri, Abolfazl Darwezeh, 1376, "Introduction to impact mechanics", first volume, first edition, Gilan University Press.
[36] Stone A. J, Wales D. J. (1986).