Contents & References of 3D simulation of flow passing through symmetric bodies and nose optimization of these bodies to achieve the lowest drag
List:
Chapter 1- Chapter 11
1-1- Introduction. 12
1-2- Important components of fluid flow. 13
1-3- Reynolds number based on fluid dynamics. 15
1-3-1- Basics.. 17
1-3-2- Drag force and dynamic simulation. 20
1-3-3- Frictional force. 21
1-4- Modeling the boundary layer in CFD. 23
1-4-1- Pressure gradient, flow separation and drag form. 24
1-5- CFD application in fluids and history. 26
Chapter 2- The second chapter. 30
2-1- Introduction. 31
2-2- History ............................32
2-2-1- Turbulent flow. 33
-standard mode k-. 36
2-3- Choosing the turbulence model. 37
2-4- The theory of the Spalart-Allmaras model 37
2-5- Different states of the k-turbulence model. 38
2-5-1- Standard mode k-. 39
2-5-2-RNG model k- 40
2-5-3- A modified model k-. 41
2-6- LES turbulent model. 43
2-7- The theory of standard and SST models. 44
2-7-1- Standard model. 44
2-7-2- SST shear stress transfer model. 45
2-7-3- Formulation 48
2-7-4- How to modify the SST model. 51
2-8- Reasons for the desire to simulate large eddies. 52
Chapter 3- The third chapter. 53
3-1- Introduction. 54
3-2- The steps of the work done in this thesis. 54
3-2-1- Submarine modeling in Solid Work software. 55
3-2-2- Model meshing in Gambit software 58
3-2-3- Flow simulation in Fluent software 62
3-2-4- Repeating the above steps to reach the most optimal nozzle possible. 64
Chapter 4- The fourth chapter. 66
4-1- Results and review. 67
Source:
1. Baker, C., 2004. Estimating drag forces on submarine hulls, Report DRDC Atlantic CR 2004-125, Defense R&D Canada – Atlantic.
2. M.Karim ;PERFORMANCE OF SST k-? TURBULENCE MODEL FOR COMPUTATION OF VISCOUS DRAG OF AXISYMMETRIC UNDERWATER BODIES IJE Transactions; Vol. 24, No. 2, July 2011.
3. Allmaras., P.S.a.S., A one-equation turbulence model for aerodynamic flows. AIAA Technical Report. American Institute of Aeronautics and Astronautics, 1992. -92-0439.
4. Spalding, B.E.L.a.D.B., Lectures in Mathematical Models of Turbulence. Academic Press. London, England, 1972.
5. T.-H. Shih, W.W.L., A. Shabbir, Z. Yang, and J. Zhu., A New k-e Eddy-Viscosity Model for High Reynolds Number Turbulent Flows Model Development and Validation. Computers Fluids, 1995: p. 24(3):227{238.
6. I., D.C., Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum, 1993. TM-107.
7. Reynolds., W.C., Fundamentals of turbulence for turbulence modeling and simulation., in Lecture Notes for Von Karman Institute Agard Report1987.
8. Wilcox., D.C., Turbulence Modeling for CFD., I. DCW Industries, Editor 1998: La Canada, California.
9. F. R. Menter, M.K., and R. Langtry. In K. Hanjalic, Y. Nagano, and M. Tummers, Ten Years of Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer 2003: p. 625,632.
10. Wilcox, D., Simulation of Transition with a Two-Equation Turbulence Model. AIAA JOURNAL, 1994. 322).
11. Sumner, D., Two circular cylinders in cross-flow: A review. Journal of Fluids and Structures, 2009. 26(6): p. 849-899.
12. White, N.M., A comparison between the drags predicted by boundary layer theory and experimental drag data for bodies of revolution 1978.
13. Karim, M.M., NUMERICAL COMPUTATION OF VISCOUS DRAG FOR AXISYMMETRIC UNDERWATER VEHICLES. Jurnal Mekanikal, 2008. 26: p. 9 - 21.
14. Goldschmied, J.S.P.a.R.E.G.a.F.R., Shaping of Axisymmetric Bodies for Minimum Drag in Incompressible Flow. HYDRONAUTICS, 1974.
15. Baldwin, B.S. and Lomax, H., 1978. Thin layer approximation and algebraic model for separated turbulent flows, AIAA 16th Aerospace SciencesThin layer approximation and algebraic model for separated turbulent flows, AIAA 16th Aerospace Sciences Meeting.
16. Cebeci, T., Shao, J.R., Kafyeke, F. and Laurendeau, E., 2005. Computational Fluid Dynamics for Engineers, Horizons Publishing Inc., Long Beach, California.
17. Versteeg, H.K. and Malalasekera, W., 1995. An Introduction to Computational Fluid Dynamics the Finite Volume Method, Longman Scientific and Technical, U.K.
18. T. Sarkar, P. G. Sayer, and S. M. Fraser, 1997. Flow simulation past axisymmetric bodies using four different turbulence models. Appl. Math. Modeling, Vol. 21, December
19. Z.J. Taylor, E. Palombi, R. Gurka, G. A. Kopp, Features of the turbulent flow around symmetric elongated bluff bodies, Journal of Fluids and Structures, vol 27, 2011, 250-265
20. Yongxiang Dong, Xiangjie Duan, Shunshan Feng, Zhiyu Shao, Numerical Simulation of the Overall Flow Field for Underwater Vehicle with Pump Jet Thruster, EPnrgoicneedeirai nEgn (2007) 769 – 774
21. Zhirong ZHANG, Baiqi LI. Integral calculation of viscous flow around ship hull with propeller. Journal of Ship Mechanics 2004;8:5.