Contents & References of Numerical simulation of forced displacement flow of non-Newtonian nanofluid in microtube
List:
Table of Contents
D
List of Tables
H
List of Figures
D
List of Signs
R
Chapter One - Introduction and Research Overview
1
1-1 Microchannels
2
1-2 Changing the rheological property of the fluid
3
1-3 Additives to liquids
3
1-4 Microchannels
4
1-4-1 Abstract
4
1-4-2 History of microchannels
4
1-4-3 Introduction Microchannels
5
1-4-4 classification of microchannels and minichannels
6
1-4-5 advantages and challenges of microchannels
7
1-4-6 methods of making microchannels
7
1-4-6-1 common technology
9
1-4-6-1-1 Micro Deformation
9
1-4-6-1-2 Micro Sawing (Micro Cutting)
9
1-4-6-2 Modern Technology
10
1-4-6-2-1 MEMS (Micro Electromechanical System)
10
1-4-6-2-2 micro laser machining
10
1-4-7 single-phase flow in microchannels
10
1-4-8 pressure drop relations
11
1-4-9 heat transfer relations
13
1-4-9-1 flow Confused
13
1-4-10 Applications of microchannels
13
1-5 Non-Newtonian fluids
14
1-5-1 Classification of non-Newtonian fluids
14
1-5-1-1 Time-independent non-Newtonian fluids
15
1-5-1-2 power rule model
16
1-5-1-3 Cross model
17
1-5-1-4 Kareo model
17
1-5-1-5 Ellis model
18
1-5-1-6 Non-fluid Newtonian time function
18
1-5-1-7 viscoelastic fluids
19
1-6 nanofluids
20
1-6-1 concept of nanofluids
20
1-6-2 hidden advantages of nanofluids
22
1-6-3 preparation of nanofluids
24
1-6-4 thermophysical properties of nanofluids
25
1-6-4-1 density
26
1-6-4-2 specific heat
26
1-6-4-3 viscosity
26
1-6-4-4 thermal conductivity coefficient
28
1-6-5 nanotechnology
34
1-6-6 production of nanoparticles
35
1-6-6-1 vapor state processes
36
1-6-6-2 process of liquid state and state solid
37
1-6-6-3 production of nanoparticles using supercritical fluid method
38
1-6-7 nanotubes
39
1-6-8 displacement heat transfer in nanofluids
39
1-6-8-1 forced displacement in Nanofluids
40
1-6-8-2 Mathematical models for determining the displacement heat transfer coefficient of nanofluids
41
1-6-8-3 Natural displacement heat transfer
45
1-7 Turbulence
45
1-7-1 Introduction
45
1-7-2 characteristics of turbulent fluid flow
47
1-7-3 turbulence models
48
1-7-3-1 k-e model
48
1-7-3-2 use of flow function in k-e model for high Reynolds numbers
49
1-7-3-3 k-e model at low Reynolds numbers
50
1-7-3-4 RNG model
50
1-7-3-5 k-w model
51
1-7-3-6 Reynolds stress model (RSM)
52
Chapter Two - Laboratory, Numerical and Theoretical Studies
53
2-1 Introduction
54
2-2 Laboratory Studies
54
2-3 Theoretical Studies
57
2-4 Numerical Studies
61
Chapter Three- Research method
64
3-1 Introduction
65
3-2 Description of the problem
65
3-3 Determination of thermophysical properties of nanofluid
67
3-4 Networking and determination of boundary conditions
69
Chapter IV - Results
70
4-1 Calculation of thermophysical properties of nanofluid
71
4-2 Calculation of displacement heat transfer coefficient and Nusselt number
72
4-3 Validation
75
4-4 Calculation of displacement heat transfer coefficient and Nusselt number of basic non-Newtonian fluid
76
4-5 effect of nanoparticle concentration onB Displacement heat transfer and Nusselt number 78 4-6 Effect of nanoparticle size on displacement heat transfer coefficient 83 4-7 Effect of Reynolds number on nanofluid displacement heat transfer coefficient and Nusselt number Chapter 5 - Conclusions and suggestions 90
5-1 Conclusion
91
5-2 Suggestions
91
Resources
93
Abstract
100
Source:
Barkhordari, M., Etemad, S.Gh./ Numerical study of non-newotonian flow and heat transfer in circular microchannels/Proceeding of the 4th international conference on computational heat and mass transfer, Paris-Cachan france/2005.
Maxwell, J.C./ Electricity and Magnetism/Clarendon Press, Oxford/UK/1873.
Tuckerman, D.B., Pease, R.F./ High performance heat sinking for VLSI/IEEE Electron Dev. Lets. EDL/ 1981/ p 126–129.
Suo, M., Griffith, P./ Two-phase flow in capillary tubes/ J. Basic Eng/ 1964/ p 576–582.
Mehendale, S.S., Jacobi, A.M., Ahah, R.K./ Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design/ Appl. Mech/ 2000,p 175–193.
Kandlikar, S.G., Garimella, S., Li, D., Colin, S., King, M.R./ Heat Transfer and Fluid Flow in Minichannels and Microchannels/ Elsevier/Amsterdam, 2006.
Palm, B./ Proceedings of Heat Transfer and Transport Phenomena in Microchannel/Heat Transfer in Microchannel, Begell House Inc. Banff/ Canada, 2000.
Nguyen, N.T., Werely, S.T./ Fundamentals and Applications of Microfluidics/ Artech House/Boston/ 2002.
Kukowski, R., /MDT- Micro deformation Technology/ ASME IMECE/ Washington D.C/ 2003.
Wu, P.Y., Little, W.A. /Measurement of friction factor for the flow of gases in very fine channels used for microminiature Joule Thompson refrigerators/ Cryogenics/ 1983/ p 273–277.
Grigull, U., Tratz, H./ Thermischer einlauf in einführunger laminarer rohrstr?mung/ Int. J. Heat Mass Transf/ 1965/ p 669–678.
Adams, T.M., Abdel-Khalik, S.I., Jeter, M., Qureshi, Z.H./An experimental investigation of single phase forced convection in microchannels/ Int. J. Heat Mass Transf/ 1997/ p 851–857.
Maxwell, J.C./ A Treatise on Electricity and Magnetism/ Clarendon Press/ Oxford/ 1873.
Choi, S.U.S./ Enhancing thermal conductivity of fluid with nanoparticles Development and applications of non-Newtonian flows/ ASME, FED/MD 66/ 1995.
Pak, B.C., Cho, Y.I./ Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles/ Exp. Heat Transfer /1998/ p 151-170.
Xuan, Y., Roetzel, W. /Conceptions for Heat Transfer Correlation of Nanofluids/ International Journal of Heat and Mass Transfer/ 2000/ p 3701-3707.
Einstein, A., "A New Determination of the Molecular Dimensions/, Annals of Physics/ 1906/ p 289-306.
Brinkman, H.C./ The Viscosity of Concentrated Suspensions and Solutions/ Journal of Chemical Physics/ 1952/ p 571.
Batchelor, G.K. / The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles/ Journal of Fluid Mechanics/ 1977/ pp 97-117.
C., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., and Angue Mintsa, H. /Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids - Hysteresis Phenomenon/ International Journal of Heat and Fluid Flow/ 2007/ p 1492-1506.
Yu, W., France, D.M., Choi, S.U.S., Routbort, J.L., Systems, E. /Review and Assessment of Nanofluid Technology for Transportation and Other Applications/, Argonne National Laboratory, Energy Systems Division, Argonne/ Illinois/ 2007.
Tseng, W.J., Lin, K./ Rheology and Colloidal Structure of Aqueous TiO2Nanoparticle Suspensions/ Materials Science and Engineering/2003/ p 186-192.
Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G.