Contents & References of Investigating the deterioration of non-isotropic TWB sheets under the hydroforming process
List:
1- Introduction. 1
2- Review of past researches. 6
2-1- Mechanical properties of TWBs 11
2-1-1- Tensile test. 11
2-1-2- Tensile properties. 13
2-1-3- Difficulty. 14
2-2- Malleability. 16
2-2-1- Formability test methods. 16
2-2-2- Malleability of TWBs 23
2-2-3- Material flow 25
2-3- Deterioration analyses. 28
2-3-1- Forms of decline. 28
2-3-2- Deterioration criteria. 29
2-4- Finite element modeling of TWBs 32
2-4-1- Modeling of the weld area. 32
2-4-2- Material hardness and yield models 35
2-4-3- Modeling the forming process. 37
2-5-Forming with the help of fluid pressure (hydroforming) 38
3- Theory. 41
3-1- Elastic-plastic deformation 41
3-1-1- Definition of material model 42
3-1-2- Strength of material 48
3-2- Hardness models. 50
3-2-1- Complete plastic model. 50
3-2-2- Isotropic hardness model. 51
3-3- Ratios of yield stress and creep. 54
3-4- Surrender level. 55
3-4-1- Van-Mises yield level 55
3-4-2- Hill yield level. 55
3-4-3- isotropic yield function. 56
3-4-4- Non-isotropic yield function. 57
3-5- Law of flow. 59
3-6- Definition of non-isotropic yielding behavior based on Lankford strain ratios 61
3-6-1- Transverse anisotropy. 62
3-6-2- planar anisotropy. 63
3-6-3- general non-isotropy. 63
3-7- Overview for deterioration and damage modeling. 65
3-7-1- Corrosive damage in malleable materials 66
3-7-2- Progression of damage. 67
3-7-3- damage initiation criteria for failure in metals. 68
3-7-4- Damage initiation criteria for yielding instability in sheets 70
3-8- Contact. 81
3-8-1- Contact surfaces. 81
3-8-2- Definition of contact pair. 84
3-8-3- Definition of general call. 85
3-8-4- Definition of contact simulation based on surface. 85
3-8-5- Damping in contacts 86
4- Mechanical and metallurgical properties. 87
4-1- Materials and welding. 87
4-2- Mechanical properties of base metals and welding area. 90
4-3- The non-isotropic behavior of plastic. 97
4-3-1- Yld2000-2d submission level. 98
4-3-2- Hill'48 submission level. 99
4-4- Forming limit chart. 101
4-5- Simulation of spherical tensile test. 104
5- TWBs of the same sex. 110
5-1- Welding line modeling and consideration of isotropic/non-isotropic behavior for base sheets. 113
5-2- The location of the valgo of the first decline. 115
5-3- Damage progress. 121
6- Non-homosexual TWBs. 122
6-1- The location of the first decline. 124
6-2- Damage progress. 128
7- Hydroforming test. 130
7-1- The location of the first decline. 133
7-2- Damage progress. 137
3-7- Comparison of two methods of mechanical forming and hydroforming. 139
7-4- Welding line movement. 143
8- Simple uniaxial tensile test 147
8-1- The location of the first deterioration. 152
8-2- Damage progress. 157
9- Conclusion and suggestions. 160
9-1- Summary and conclusion. 160
9-2- Suggestions. 162
References. 164
Source:
[1] Rooks, B. (2001). "Tailor-welded blanks bring multiple benefits to car design," Assembly Automation, vol. 21: 323-328.
[2] Kusuda, H., Takasago, T. and Natsumi, F. (1997). "Formability of tailored blanks." Journal of Materials Processing Technology, vol. 71: 134-140.
[3] Montgomery, A., Wild, P. and Clapham, L. (2004). "Defect characterization using magnetic flux leakage inspection of tailor-welded blanks." Insight, vol. 46: 260-264.
[4] Zhao, K. M., Chun, B. K. and Lee, J. K. (2001). "Finite element analysis of tailor-welded blanks." Finite Elements in Analysis and Design, vol. 37: 117-130.
[5] Zadpoor, A. A. (2010). Tailor-made blanks for the aircraft industry, Ph.D thesis, Delft University.
[6] Clapham, L., Abdullah, K., Jeswiet, J. J., Wild, P. M. and Rogge, R. (2004). "Neutron diffraction residual stress mapping in same gauge and differential gaugeNeutron diffraction residual stress mapping in same gauge and differential gauge tailor welded blanks. Journal of Materials Processing Technology, vol. 148,: 177- 185.
[7] Chung, K., Lee, W., Kim, D., Kim, J., Chung, K.H., Kim, C., Okamoto, K. and Wagoner, R.H. (2010). "Macro-performance evaluation of friction stir welded automotive tailor-welded blank sheets: Part I - Material properties." International Journal of Solids and Structures, vol. 47,: 1048–1062.
[8] Team, T. W. B. P. (2001). "Tailor welded blank applications and manufacturing - a state of the art survey." Auto-Steel Partnership.
[9] Mishra, R. S. and Ma, Z. Y. (2005). "Friction stir welding and processing." Materials Science and Engineering R-Reports, vol. 50,: 1-78.
[10] Zhao, H., White, D. R. and DebRoy, T. (1999). "Current issues and problems in laser welding of automotive aluminum alloys." International Materials Reviews, vol. 44,: 238-266.
[11] Cao, X., Wallace, W., Poon, C. and Immarigeon, J. P. (2003). "Research and progress in laser welding of wrought aluminum alloys. I. Laser welding processes." Materials and Manufacturing Processes, vol. 18,: 1-22.
[12] Cao, X., Wallace, W., Immarigeon, J. P. and Poon, C. (2003). "Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties." Materials and Manufacturing Processes, vol. 18,: 23-49.
[13] Wild, P. M., Abdullah, K., Jeswiet, J. J. and Ghasempoor, A. (2001). "Tensile testing for weld deformation properties in similar gauge tailor welded blanks using the rule of mixtures." Journal of Materials Processing Technology, vol. 112,: 91-97.
[14] Davies, R. W., Smith, M. T., Khaleel, M. A., Pitman, S. G. and Oliver, H. E. (2000). "Weld metal ductility in aluminum tailor welded blanks." Metallurgical and Materials Transactions A, vol. 31A,: 2755-2763.
[15] Davies, R. W., Oliver, H. E., Smith, M. T. and Grant, G. J. (1999). "Characterizing Al tailor welded blanks for automotive applications." JOM, vol. 51,: 46-50.
[16] Hetu, L. and Siegert, K. (2005). "Hydromechanical deep drawing of tailor welded blanks." Steel Research International, vol. 76,: 857-865.
[17] Davies, R. W., Grant, G. J., Khaleel, M. A., Smith, M. T. and Oliver, H. E. (2001). "Forming limit diagrams of aluminum tailor-welded blank weld material." Metallurgical and Materials Transactions A, vol. 32A,: 275-283.
[18] Ghoo, B. Y., Keum, Y. T. and Kim, Y. S. (2001). "Evaluation of the mechanical properties of welded metal in tailored steel sheet welded by CO2 laser." Journal of Materials Processing Technology, vol. 113,: 692-698.
[19] Padmanabhan, R., Oliveira, M.C., Menezes, L.F. (2008). "Deep drawing of aluminum-steel tailor-welded blanks." Materials and Design, 29,: 154–160.
[20] Liu, S. and Chao, Y. J. (2005). "Determination of global mechanical response of friction stir welded plates using local constitutive properties." Modeling and Simulation in Materials Science and Engineering, vol. 13,: 1-15.
[21] Hatamleh, O. (2008). "Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints." Materials Science and Engineering A, vol. 492,:168-176.
[22] Genevois, C., Deschamps, A., Denquin, A. and Doisneau-cottignies,B. (2005). "Quantitative investigation of precipitation and mechanical behavior for AA2024 friction stir welds.", Acta Materialia, vol. 53,:2447-2458.
[23] Genevois, C., Deschamps, A. and Vacher, P. (2006). "Comparative study on local and global mechanical properties of 2024 T351, 2024 T6 and 5251 O friction stir welds." Materials Science and Engineering A, vol. 415,: 162-170.
[24] Lockwood, W. D. and Reynolds, A. P. (2003). "Simulation of the global response of a friction stir weld using local constitutive behavior." Materials Science and Engineering A, vol. 339,: 35-42.
[25] Sutton, M.A., Yang, B., Reynolds, A. P. and Yan, J.