Contents & References of Stress analysis, estimation of behavior and elastic properties of carbon nanotubes under tensile loading
List:
Chapter One (Introduction)
1-1 Introduction. 2
2-1 Modified Morse potential function. 9
3-1 Tersoff-Brenner and Tersoff potential functions. 11
4-1 second-generation potential functions of reactive experimental coupling order and Leonard Jones 6-12 12
Chapter II (Estimation of elastic modulus)
1-2 Reference formulation. 18
1-1-2 Energy potential. 20
2-1-2 Modified Morse potential function. 20
3-1-2 Tresov potential function. 21
4-1-2 Formulation using modified Morse potential function. 22
5-1-2 Formulation using the Tresov potential function. 23
2-2 structural analysis. 24
1-2-2 curvature effect 31
2-2-2 armchair structure. 31
3-2-2 zigzag structure. 32
3-2 Results and discussions. 35
Chapter 3 (estimation of mechanical behavior)
1-3 Introduction. 42
2-3 reference formulation. 42
3-3 structural analysis. 44
1-3-3 armchair structure. 48
2-3-3 zigzag structure. 49
3-3-3 The effect of curvature 50
4-3 Results and discussions. 53
Chapter Four (Software Modeling)
1-4 Modeling. 59
2-4 topics and results. 61
Chapter Five (Conclusions and Suggestions)
Conclusions and Suggestions. 67
List of presented articles. 70
List of references. 71
Source:
Since the above thesis, the following articles and conferences have been presented:
Title of paper:
Prediction of elastic modulus of single walled carbon nanotubes under tension with a new combined method
Submitted in: Journal of Acta Mechanica (ISI) - 21/09/2010.
Title of conference:
Prediction of elastic modulus of zigzag single walled carbon nanotube under tension with a new combined method
Submitted in: 3rd International Conference on Nanoscience and Nanotechnology, 9-11 November 2010, Shiraz, Iran (ICNN2010).
Title of conference:
A novel analytical molecular structural model for the calculation of young's modulus of zigzag single walled carbon nanotubes in presence of vacancies
Submitted in: 3rd International Conference on Nanoscience and Nanotechnology, 9-11 November 2010, Shiraz, Iran (ICNN2010).
Title of conference:
A theoretical study to predict the young modulus of zigzag single walled carbon nanotubes containing vacancy
Submitted in: Nanocon2010 czech republic, 12-14 October.
Title of conference:
Defect of unit cell length on young modulus of zigzag single walled carbon nanotubes
Submitted in: Nanocon2010 czech republic, 12-14 October.
List References
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991)56–68.
[2] Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 2000; 76(20):2868–70.
[3] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high young's modulus observed for individual nanotubes. Nature 1996; 381(6584):678–80.
[4] Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 1997; 277(26):1971–5.
[5] Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load. Science 2000; 287(28):637–40.
[6] Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young's modulus of single-walled nanotubes. Phys Rev B 1998; 58(20):14013–9.
[7] Lu JP. Elastic properties of single and multilayered nanotubes. J Phys Chem Solids 1997; 58(11):1649–52. [8] Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 1997; 79(7):1297–9.
[9] Lier GV, Alsenoy CV, Doren VV, Geerlings P. Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phys Lett 2000; 326:181–5.
[10] Srivastava D, Menon M, Cho
[10] Srivastava D, Menon M, Cho K. Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys Rev Lett 1999; 83(15):2973–6.
[11] T. Belytschko, S. Xiao, G. Schatz, R. Ruoff, Atomistic simulations of nanotube fracture, Physical Review B 65 (25) (2002) 235430.
[12] J.R. Xiao, B.A. Gama, J.W. Gillespie Jr., An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes, International Journal of Solids and Structures 42 (2005) 3075–3092.
[13] X. Sun, W. Zhao, Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach, Materials Science and Engineering 390 (2005) 366–371. [14] D.W. Brenner, Phys. Rev. B 42 (1990) 9458.
[15] J. Tersoff, Phys. Rev. B 39 (1989) 5566.
[16] M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski, Phys. Rev. B 70 (2004) 245416.
[17] Tersoff J. New empirical model for the structural properties of silicon. Phys Rev Lett 1986; 56:632–5.
[18] Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B 1988; 37:6991–7000. [19] Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 1990; 42:9458–71.
[20] Lennard-Jones LE. The determination of molecular fields. I. From the variation for molecular simulation. Proc Roy Soc London 1924; 106A:441–62.
[21] Mahmood M. Shokrieh, Roham Rafiee. Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Tehran 2009; 16846-13114.
[22] Li C, Chou T. A structural mechanics approach for the analysis of carbon nanotubes. Int J Solid Struct 2003;40:2487–99.
[23] Kudin KN, Scuseria GE, Yakobson BI. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 2000;64(23):1–10 [Article ID 235406].
[24] Reddy CD, Rajendran S, Liew KM. Equivalent continuum modeling of graphene sheets. Int J Nanosci 2005;4(4):631–6.
[25] Kelly BT. Physics of graphite. London: Applied Science Press; 1981. [26] Toshiaki Natsuki, et al. Prediction of elastic properties for single walled carbon nanotube. Carbon 42(2004) 39-45.
[27] Paras M. Agrawal, et al. A comparison of different methods of young modulus determination for single walled carbon nanotube using molecular dynamic simulation. Computational Materials Science 38 (2006) 271–281.
[28] B Jalalahmadi, R Naghdabadi. Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness. Journal of Physics: Conference Series 61 (2007) 497–502.
[29] Gao X L and Li K 2003 Int. J. Solids Struct. 40 7329-37.
[30] Yakobson B I, Brabec C J and Bernholc J 1996 Phys. Rev. Lett. 76 2511-4.
[31] Zhou X, Zhou J J and Ou-Yang Z C 2000 Phys. Rev. B 62 13692–6.
[32] Tu Z and Ou-Yang Z 2002 Phys. Rev. B 65 233407.
[33] Pantano A, Parks DM and Boyce MC 2004 J. Mech. Phys. Solids 52 789-821.
[34] Kudin K N, Scuseria G E and Yakobson B I 2001 Phys. Rev. B 64 235406. [35] Lu J P 1997 Phys. Rev. Lett. 79 1297–300.
[36] Hernandez E, Goze C, Bernier P and Rubio A 1998 Phys. Rev. Lett. 80 4502–5.
[37] Jin Y and Yuan F G 2003 Compos. Sci. Technol. 63 1507-15.
[38] Meo M, Rossi M. Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modeling. Composites Science and Technology 66 (2006) 1597–1605.
[39] Odegard G M, Gates T S, Nicholson L M and Wise K E 2002 Compos. Sci. Technol. 62 1869-80.
[40] Chang T, Gao H. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solid 2003;51:1059–74.
[41] Xiao JR, Gama BA, Gillespie Jr JW.