Contents & References of Numerical study of transient characteristics of field effect transistors based on graphene nanoribbons
List:
List: 3
List of tables 5
Abstract. 8
The first chapter. 10
Introduction. 10
The second chapter. 17
2-1- Introduction of graphene nano tape. 17
2-1-1- Graphene production methods: 24
2-1-1-1- E-beam lithography. 24
2-1-1-2- Micromechanical scaling method: 25
2-1-1-3- Interwoven growth method: 26
2-1-1-4- Vapor deposition method Chemical(CVD) : 26
Source:
[1] M. Lundstrom and J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation, New York: Springer-Verlag, 2006.
[2] Gengchiau Liang, Neophytos Neophytou, Dmitri E. Nikonov, and Mark S. Lundstrom, Theoretical study of Graphene Nanoribbon Field-Effect Transistors, Technical Proceedings of NSTI Nanotechnology Conference and Trade Show, vol.1, May 2007.
[3] Gengchiau, Neophytos Neophytou, Dmitri E. Nikonov, and Mark S. Lundstrom, Performance Projections for Ballistic Graphene Nanoribbon Field-Effect Transistors,
IEEE Trans. Electr. Dev. vol. 54, pp. 677-682, 2007. [4] Fujita M., Wakabayashi K., Nakada K. and Kusakabe K., Peculiar Localized State at Zigzag Graphite Edge, J. Phys. Soc. Jpn. Vol. 65, pp. 1920-1923, 1996.
[5] Nakada K., Fujita M., Dresselhaus G., and Dresselhaus M.S., Edge state in Graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B, vol. 54, pp. 17954–17961, 1996.
[6] Zhixin Guo, Dier Zhang, and Xin-Gao Gong, Thermal conductivity of Graphene nanoribbons, Applied physics letters, vol.95, pp. 163103-163106, 2009.
[7] Azad Naeemi and James D. Meindl, Conductance Modeling for Graphene Nanoribbon (GNR) Interconnects, IEEE Electron Device Letters, vol. 28, pp. 428-431, May 2007.
[8] X. Li, H. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, vol. 319, pp. 1229-1232, 2008.
[9] Iang, Q.,et.al., Superconducting Switch Made of Graphene Nanoribbon Junctions, Nanotechnology ,vol.19 , pp.355706-355713, 2008.
[10] Yijian Ouyang, Youngki Yoon, and Jing Guo, Scaling Behaviors of Graphene Nanoribbon FETs: A Three Dimensional Quantum Simulation Study IEEE Transactions on Electron Devices, Vol. 54, pp. 2223-2231, September 2007. [11] Dr. Lei Liao, Jingwei Bai, Yungchen Lin, Dr. Yongquan Qu, Prof. Yu Huang, and Prof. Xiangfeng Duan, High Performance Top-Gated Graphene Nanoribbon
Transistors Using Zirconium Oxide Nanowires as High-k Gate Dielectrics, Adv Mater.,vol.22, pp. 1941–1945, May 2010.
[12] S. Luryi, Quantum capacitance devices, Appl. Phys. Lett., vol. 52, pp. 501–503, Feb.1988.
[13] A. Rahman, J. Guo, S Datta, and M. Lundstrom, Theory of ballistic nanotransistors, IEEE Trans. Electron Devices, vol. 50, pp. 1164-1853, Sep. 2003.
[14] M. R. Choudhury et al., Technology exploration for Graphene nanoribbon FETs, in Proc. Design Automation Conference, pp. 272–277, 2008.
[15] Khairul Alam, Transport and performance of a zero-Schottky barrier and doped contacts graphene nanoribbon transistors, Semicond. Sci. Technol., vol.24, pp, 015007-015022, 2009.
[16] Youngki Yoon, Gianluca Fiori, Seokmin Hong, Giuseppe Iannaccone, and Jing Guo, Performance Comparison of Graphene Nanoribbon FETs with Schottky Contacts and Doped Reservoirs, IEEE Trans. Electron Devices, vol. 55, pp. 2314–2323, Sep. 2008.
[17] M. Y. Han et al., Energy band-gap engineering of graphene nanoribbons, Physical Review Letters, vol. 98, p. 206805-206808, 2007.
[18] D. Basu et al., Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors, Applied Physics Letters, vol. 92, p. 042114, 2008.
[19] Y. Yoon and J. Guo, Effect of edge roughness in graphene nanoribbon transistors, Applied Physics Letters, vol. 91, p. 073103, 2007.
[20] Yijian Ouyang, Youngki Yoon, and Jing Guo, Edge.
[20] Yijian Ouyang, Youngki Yoon, and Jing Guo, Edge Chemistry Engineering of Graphene Nanoribbon Transistors: A Computational Study, IEEE Trans. Electr. Dev.,
pp. 1-4, 2008.
[21] Yijian Ouyang, Hongjie Dai, and Jing Guo1 Projected Performance Advantage of Multilayer Graphene Nanoribbon as Transistor Channel Material, Nano Res, vol. 3, pp. 8–15, 2010.
[22] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev., Modern Phys., 81 (2009).
[23] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov, Science, 306 (2004).
[24] S. Das Sarma, S. Adam, E. H. Hwang and E. Rossi, Rev. Mod. Phys., 83 (2011).
[25] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors, Phys.
Rev. Lett. vol. 100, pp. 206803-206807, 2008.
[26] Erjun Kan, Zhenyu Li, and Jinlong Yang, ?Graphene Nanoribbons: Geometric,
Electronic, and Magnetic Properties, Intech, pp. 332-348, March 2011.
[27] ircea R. Stan, Dincer Unluer, Avik Ghosh, and Frank Tseng, ?Graphene Devices, Interconnect and Circuits –Challenges and Opportunities, IEEE Electron Device Letters, vol. 978, pp. 69-72, 2009.
[28] Azad Naeemi and James D. Meindl, Conductance Modeling for Graphene Nanoribbon (GNR) Interconnects, IEEE Electron Device Letters, vol. 28, pp. 428-431, May 2007. [p>
] 29[ Moazzami Goderzi M. - Investigating factors affecting the stabilization of graphene nanosheets in polymer systems - Amirkabir University - 1389.
] 30 [ Taghi Skui M. - Research trends in the field of graphene - Nano Technology Monthly - March 8, 1388 - Number 12, Piyapi 149. [p>
]31 [Aghajani T. - Investigating the electrochemical behavior and application of gold electrode modified by graphene functionalized at the edges - Senior at Sharif University of Technology - 2013.
[32] Lu, X. K., M. F. Yu, H. Huang, and R. S. Ruoff. 1999. Tailoring graphite with the goal of achieving single sheets. Nanotechnology.
[33] A. K Geim, K. S. Novoselov, S.V. Morozov, D. Jiang, Y. Zhang, S. V. Dubons, I. V. Grigorieva, A. A. Firsov. 2004. Electric field in atomically thin carbon films
[34] Matthew J Allen, Vincent C. Tung, Richard B. Kaner. 2010. A review of graphene
[35] Robertj, young, Ian A. Kinloch, Lei Gong, Kostya S. Novoselov. 2010 The mechanics of graphene nanocomposites : A review.
[36] Park, S., and R. S. Ruoff. 2009. Chemical methods for the production of graphenes. Nature Nanotechnology.
]37 [Iran Composite Institute-Composite Journal
[38]Stephan Roche, Nature Nanotechnology 6, 8–9 (2011), oi:10.1038/nnano.2010.262 Published online 23 December 2010
[39] Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov & Hongjie Dai1, Narrow graphene nanoribbons from carbon nanotubes, Nature, vol. 458, pp. 877-880, 2009.
[40] Norma L. Rangel, Juan C. Sotelo, and Jorge M. Seminario, ?Mechanism of carbon nanotubes unzipping into graphene ribbons, Chemical Physics, vol.131, pp.031105-031109, 2009.
[41] Andreas Hirsch, ?Unzipping Carbon Nanotubes: A Peeling Method for the Formation of Graphene Nanoribbons, Angew. Chem. Int. Ed., vol. 48, pp. 6594 6596, 2009.
[42] Alexander Sinitskii, Alexandra A. Fursina, Dmitry V. Kosynkin, Amanda L. Higginbotham, Douglas Natelson, and James M. Tour, Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes, Applied Physics Letters, vol. 95, pp. 253108-253110, 2009.
[43] Sang-Chul Jeon, Dong-Kyu Lee, Young-Su Kim, Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process, Transactions on Electrical and Electronic Materials, Vol.11, pp. 190-193, August 25, 2010.
[44] Th. Nirschl, "Scaling Properties of the tunneling field effect transistor (TFET):
Device and circuit" Solid-stata Electronic. vol. 50, 2006, pp. 44–51.