Contents & References of Design and simulation of eyeball pressure sensor
List:
Chapter 1: Overview of the plan. 1
1-1 Introduction. 1
1-2 research objectives. 5
1-3 The importance of the research topic and the motivation for choosing it. 5
1-4 research hypotheses. 6
1-5 limitations and research problems. 7
1-6 Project Structure 7
Chapter Two: An Overview of Studies 8
Introduction. 8
2-1 Introduction of MEMS. 9
2-2 MEMS transducers. 10
2-3 pressure sensors. 10
2-3-1 Piezoelectric pressure sensors. 10
2-3-2 piezo resistance pressure sensors. 11
2-3-3 Capacitive pressure sensors. 11
2-3-3-1 Reasons for using the capacitive pressure sensor. 12
2-4 eye structure. 13
2-4-1 eyelid. 14
2-4-2 conjunctiva. 14
2-4-3 cornea. 14
2-4-4 iris and pupil. 15
2-4-5 front room. 16
2-4-6 lenses. 16
2-4-7 vitreous. 17
2-4-8 retina. 17
2-4-9 sclera. 18
2-4-10 optic nerve. 18
2-4-11 eye muscles. 18
2-5 What is glaucoma? 18
2-5-1 Primary open-angle glaucoma. 19
2-5-2 acute angle-closure glaucoma. 19
2-6 Conventional techniques for measuring intraocular pressure. 21
2-6-1 Goldman applanation tonometer. 21
2-6-2 Non Contact Tonometry (NCT: Non Contact Tonometry) 23
2-6-3 Tonopen (Tonopen) 24
2-6-4 Dynamic Contour Tonometry (DCT) 24
2-7 Need for continuous intraocular pressure measurement. 25
8-2 Techniques for continuous measurement of intraocular pressure. 26
2-8-1 Measurement techniques by wired sensors. 27
2-8-2 induction coupling tachometer. 29
2-8-2-1 Disabled device. 30
2-8-2-2 active device. 41
2-9 discussion. 42
Chapter three: Research method. 43
Introduction. 43
3-1 Design of MEMS capacitive pressure sensors. 43
3-2 Flat diaphragm modeling. 45
3-3 Checking the structure of the capacitive pressure sensor. 48
3-3-1 mechanical sensitivity of the diaphragm. 49
3-3-2 sensor sensitivity. 50
3-3-3 Selecting the working area for the eye pressure sensor. 51
3-4 checking the capacitance. 52
3-5 Bending analysis of a thin plate. 53
3-5-1 Checking the basic equations of thin plates with small displacement. 54
3-5-2 Review of boundary conditions. 56
3-5-3 displacement of thin plate under uniform external pressure. 57
3-6 Calculating the capacitance of the capacitive pressure sensor. 69
3-7 finite element analysis. 70
3-7-1 Fixed four-sided square diaphragm. 70
3-7-2 grooved square aperture. 71
Chapter four: simulation results. 73
Introduction. 73
4-1 Diaphragm simulation. 73
4-1-1 Mathematical results. 74
4-1-2 diaphragm stress effect. 74
4-1-3 Effect of aperture size. 75
4-1-4 Effect of diaphragm thickness. 75
4-1-5 mechanical sensitivity of the diaphragm. 76
4-1-6 finite element simulation results. 78
4-2 Simulation of eye pressure sensor structure. 86
4-2-1 Effect of design parameters on static and dynamic behavior of eye pressure sensor. 87
4-2-2 Pauline voltage check for square diaphragm structure. 87
4-2-3 Capacitance of eye pressure sensor. 90
4-2-4 stress distribution on the diaphragm. 92
4-2-5 Frequency response of capacitive eye pressure sensor. 93
4-3 Using a polysilicon diaphragm to increase the sensitivity of the eye pressure sensor. 95
4-4 Investigation of eye pressure sensor with grooved polysilicon diaphragm. 99
4-5 Comparison of polysilicon and p++si pressure sensors in clamped mode. 102
4-6 Comparison of polysilicon and p++si pressure sensors with grooved diaphragm. 111
4-7 Comparison of capacitive pressure sensor with polysilicon diaphragm in clamped and grooved mode. 119
Chapter five: conclusions and suggestions. 128
5-1 Conclusion. 128
5-2 suggestions. 131
References. 132
Source:
Fujita, H. Microactuators and micromachines. Proceedings of the IEEE, 86(8):1721–1732, 1998.
Goodall, G. A. Design of an implantable micro-scale pressure sensor for managing glaucoma. Michigan State University, Department of Mechanical Engineering, 2002.
Katuri, K. C., Asrani, S., and, and Ramasubramanian, M. K. Intraocular pressure monitoring sensors. IEEE Sensors 1, vol. 8, no. 1, 12-19, Jan. 2008.
Scheeper, P. R., Olthuis, W., and Bergveld, P. A silicon condenser microphone with a silicon nitride diaphragm and backplate. J. Micromech. Microeng. 2, pp.87-189, 1992.
Scheeper, P. R., Olthuis, W., and Bergveld, P. The design, fabrication, and testing of corrugated silicon nitride diaphragms. Journal of Microelectromechanical Systems, vol. 3, no. 1. 1994.
Puers, R., Vandevoorde G., and De Bruyker, D. Electrodeposited copper inductors for intraocular pressure telemetry. J. Micromech. Microeng. vol. 10, pp. 124–129, 2000.
Gloster, J. and Perkins, E. S. The validity of the Imbert-Flick law as applied to applanation tonometry. Exp. Eye Res., vol. 44, pp. 274–283, 1963.
Ehlers, N., Bramsen, T., and Sperling, S. Applanation tonometry and central corneal thickness. Acta Ophthalmol., vol. 53, p. 34, 1975.
Moses, R. A. The Goldmann applanation tonometer, Amer. J. Ophthalmol., vol. 46, no. 6, pp. 865–869, Dec. 1958.
Forbes, M., Pico, G. Jr., Grolman, B. A noncontact applanation tonometer. Description and clinical evaluation. Arch Ophthalmol;91:134-140, 1974.
Kempf, R., Kurita, Y., Iida, Y., Kaneko, M., Mishima, H. K., Tsukamoto, H., and Sugimoto, E. Understanding eye deformation in non-contact tonometry. in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., New York, pp. 5428–543130, Aug.–3 Sep. 2006.
Frenkel, R., Hong, Y., and Shin, D. Comparison of Tono-Pen to the Goldmann applanation tonometer. Arch. Ophthalmol., vol. 106, no. 106, pp. 750–753, 1998.
Schneider, E., and Grehn, F. Intraocular pressure measurement-comparison of dynamic contour tonometry and Goldman applanation tonometry. J Glaucoma, vol. 15, no. 1, pp. 2–6, Feb. 2006.
Asrani, Zeimer, Wilensky, Geiser, Vitale, and Lindenmuth, Large diurnal fluctuations in IOP are an independent risk factor in glaucoma patients. J. Glaucoma, vol. 9, pp. 134–142, 2000.
Fogagnolo, P., Rossetti, L., Mazzolani, F., and Orzalesi. N. Circadian variations in central corneal thickness and intraocular pressure in patients with glaucoma. Bro. J. Ophthalmol., vol. 90, pp. 24–28, 2006.
Barkana, Y., Anis, S., Liebmann, J., Tello, C., and Ritch. R. Clinical utility of intraocular pressure monitoring outside of normal office hours in patients with glaucoma. Arch. Ophthalmol., vol. 124, Jun. 2006.
Waters, G. E., Thommen, Jr. and R. L. Intraocular pressure sensor. U.S. Patent 4922913.
Leonardi, M., Leuenberger, P., Bertrand, D., Bertsch, A., and Renaud, P. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Investigative Ophthalmol. Vis. Sci., vol. 45, no. 9, Sep. 2004.
Leonardi, M., Leuenberger, P., Bertrand, D., Bertsch, A., and Renaud, P. A soft contact lens with a mems strain gauge embedded for intraocular pressure monitoring. in Proc. 12th Int. Conf. Solid State Sensors, Actuators, Microsyst., Boston, MA, vol. 2, pp. 1043–1046, Jun. 8–12, 2003.
Puers, R. Capacitive sensors: When and how to use them. Sens. Actuators A, vol. 37–38, pp. 93-105, 1993.
Collins, C. C. Miniature passive pressure transducer for implanting in eye. IEEE Trans. Bio-Med. Eng., vol. BME-14, no. 2, pp. 74–83, Apr. 1967.
Backlund, Y., Rosengren, L., Hok, B., and Svedbergh, B. Passive silicon transducer intended for biomedical, remote pressure monitoring. Sens. Actuators, vol. A21–A23, pp. 58–61, 1990.
Rosengren, L., Backlund, Y., Sjostrom, T., Hok, B., and Svedbergh, B. A system for wireless intraocular pressure measurements using a silicon micromachined sensor. J. Micromech. Microeng., vol. 2, pp. 202–204, 1992.
Rosengren, L., Backlund, Y., Sjostrom, T., Hok, B., and Svedbergh, B., and Selen, G. A system for passive implantable pressure sensors. Sens. Actuators A, vol. 43, pp