Contents & References of Designing dc-dc converters to generate high voltage pulses
List:
Chapter One: Review of pulsed power systems and their applications
Introduction
1-1 History of pulsed power systems
1-2 Working principles
1-3 Components of pulsed power systems
1-3-1 Energy storage system
1-3-2 Pulse forming systems
1-3-3 switches
1-3-3-1 switches with liquid connection
1-3-3-2 spark gap switches
1-3-3-3 resistance switch
1-3-3-4 semiconductor switches
1-4 application of pulsed power systems
1-4-1 application in the field of microorganisms 1-4-2 High pressure electrical pulses in food processes 1-4-3 Applications in the field of materials manufacturing 1-4-3-1 Electroplating by pulses 1-4-3-2 Preparation of wood by laser pulses 1-4-4 Crushing of rocks by pulses 1-4-5 Applications in the field of chemicals and materials Petroleum
1-4-5-1 Removal of emulsions in crude oil by pulsed high pressure fields
1-4-6 Water and wastewater treatment
Chapter two: review of types of power pulses and their generator circuits
Introduction
2-1 Power pulse shaping network
2-2 Power pulse compressor
2-2-1 Performance of series magnetic compressors
2-2-2 Parallel magnetic pulse compressors
2-3 Marx generator
2-4 Resonant pulse generator
2-5 Resonant doubler pulse generator
2-6 Voltage multiplier circuit
2-6-1 Positive voltage multiplier
Chapter three: Converter Positive boost book for generating high pulse voltage
Introduction
3-1 Basic concept of pulsed power
3-2 Topology arrangement and analysis
3-2-1 General arrangement
3-2-2 Turn on modes
3-2-2-1 First mode: Inductor charging (on: Ss and on: S1 and on: S2)
3-2-2-2 Second state: Inductor current circulation (Off: Ss: On: S1, On: S2)
3-2-2-3 Third state: Charge: Capacitor (On: Ss: On: S1, On: S2)
3-2-2-4 Fourth state: Separate charging of capacitors (Off: S2 and Off: S1 and Off: Ss)
3-3 Analysis Circuit
3-3-1 Control strategies
3-3-2 Current source control
3-3-3 Voltage source control
3-3-4 Load sample control
3-4 Simulated results and analysis
3-4-1 Simultaneous switching
3-4-2 Separate switching
Chapter four: Introducing the presented topology and Simulation results
4-1 Topology introduction
4-2 Topology arrangement and analysis
4-2-1 first stage: pulse power converter storage (self charge)
4-2-2 second stage: pulse power converter energy transfer (capacitor charge)
4-2-3 in the third stage: pulse power generation (plasma failure)
4-3 mechanisms Control
4-3-1 Current source control
4-3-2 Voltage source control
4-3-3 Load sample control
4-4 Current and voltage analysis applied to semiconductor devices
4-4-1 Inductor charging (current source)
4-4-2 Capacitor charging (voltage source)
4-4-3 Failure Plasma
4-5 Results and simulation
4-5-1 Currents stored in inductors
4-5-2 Voltage stored in capacitors
4-5-3 Voltage and current applied to the load
Chapter five: Conclusion and suggestions
5-1 Conclusion
5-2 Suggestions
Sources
Source:
]1[.E. Schamiloglu, R. J. Barker, M. Gundersen, A. A. Neuber, "Scanning the Technology Modern Pulsed Power: Charlie Martin and Beyond", Proceeding of the IEEE, Vol. 92, No. 7 july 2004.
]2[.Pulsed Power Technology and Applications- Scandinavia, EPRI, Palo Alto, CA:1999
[3].Mafidi Bid Goli, A., "Design and Construction of Pulsed Power Sources", Master's Thesis in Electrical Engineering, Iran University of Science and Technology, 1377.
]4[.J.C. Martin, "Nanosecond Pulse Techniques", Proceeding of the IEEE, Vol. 80, No. 6, June 1992
]5[.S. Roche, “Solid State Pulsed Power Systems”, Physique & industrie, 17rue de la rente Logerot, 21160 Marsannay la cote, FRANCE.
]6[. S. Humphries, Jr. "Principles of Charged Particle Acceleration" [on-line], Available: http://www.fieldp.com/cpa/cpa.html.
]7[. M.P.J.Gaudreau, T. Hawkey, J. Petry, M. A. Kempkes, “A Solid State Pulsed Power System for Food Processing”, IEEE Pulsed Plasma Science, vol. 2, Jun. 2001
]8[. C. Schultheiss, H. J. Bluhm, H. G. Mayer,"Industrial-Scale Electroporation of Plant Material Using High Repetition Rate Marx Generators", IEEE Pulsed Power Plasma Science, vol. 1, Jun. 2001.
]9[. H. Inoue, I. V. Lisitsyn, H. Akiyama, I. Nishizawa,"Drilling of Hard Rocks by Pulsed Power", IEEE Electrical Insulation Magazin, vol.16, NO. 3, May/June 2000.
]10[. I. V. Timoshkin, J. W. Mackersie, S. J. MacGregor, "Plasma Channel Miniature Hole Drilling Technology", IEEE Trans. On Plasma Science, Vol. 32, No. 5, October 2004. [p>
]11[. S. J. MacGregor, O. Farish, R. Fouracre, N. J. Rowan, J. G. Anderson, Inactivation of Pathogenic and Spoilage Microorganisms in a Liquid Test Using Pulsed Electric Fields”, IEEE Trans. On Plasma Science,vol.28,no.1 Feb.2000
]12[.E. J. M. van Heesch, A. J. M. Pemen, P.A. H.J. Huijbrechts, P. C. T. van der Laan, K. J. Ptasinski, G. J. Zanstra, P. de Jong, “A Fast Added Power Source Applied to Treatment of Conducting Liquids and Air”, IEEE Trans. On Plasma Science, Vol.28, No. 1,Feb. 2000.
]13[. E.H.W. M. Smulders, B. E. J. M. van Heesch, S. S. V. B. van Paasen, “Plus Power Corona Discharge for Air Pollution Control”, IEEE Trans. on Plasma Science, Vol. 26, No. 5, Oct. 1998
]14[. A. Pokryvailo, Y. Yankelevich, M. Wolf, E. Abramzon, S. Wald, A. Welleman, "A High-Power Pulsed Corona Source For Pollution Control Application". IEEE Trans. on Plasma Science, Vol.32, No.5, Oct. 2004.
[15] Z. He, J. Liu and W. Cai, “The important role of the hydroxy ion in phenol removal using pulsed corona discharge,” J. Electrostatics, Vol. 63, (Is. 4), pp.371-386, 2005.
[16] E. Njatawidjaja, A. T. Sugiarto, T. Ohshima and M. Sato, "Decoloration of electrostatically atomized organic dye by the pulsed streamer corona discharge," J. Electrostatics, Vol. 63, (Is. 4), pp.353-359, 2005.
[17] T. Sakugawa, "Development of a high-repetition-rate pulsed power generator and its applications" Doctorate thesis, Mar. 2004.
[18] Richard Nuccitelli, Uwe Pliquett, Xinhua Chen, Wentia Ford, R. James Swanson, Stephen J. Beebe, Juergen F. Kolb and Karl H. Schoenbach, "Nanosecond pulsed electric fields cause melanomas to self-destruct," Biochemical and Biophysical Research Communications (BBRC), Vol. 343, p.351, 2006.
]19[. W.J. M. Samaranyake, T. Namihira, S. Katsuki, "Pulsed Power Production of Ozone Using Nonthermal Gas Discharge", IEEE Electrical Insulation Magazine, Vol. 17, No. 4, 2001
]20[. N. Shimomura, H. Togo, F. Fukawa, H. Akiyama, "Consideration of Discharge Reactor to Exploit Nanosecond Pulsed Power", IEEE Power Modulator Symposium, 2004 and High-Voltage Workshop. Conference Record of the Twenty-Sixth International.
[21] H. Akiyama, T. Sakugawa, T. Namihira, K. Takaki, Y. Minamitani, and N. Shimomura, “Industrial Applications of Pulsed Power Technology”, IEEE Trans. Dielectr. Electr. Insul., Vol. 14, pp. 1051–1064, 2007.
[22] H. Akiyama, S. Sakai, T. Sakugawa, and T. Namihira, “Invited Paper - Environmental Applications of Repetitive Pulsed Power”, IEEE Trans. Dielectr. Electr. Insul., Vol. 14, pp. 825–833, 2007.
[23] T. Heeren, T. Ueno, D. Wang, T. Namihira, S. Katsuki, and H. Akiyama, “Novel Dual Marx Generator for Microplasma Applications”, IEEE Trans. Plasma Sci., Vol. 33, pp. 1205–1209, 2005.
[24] H. Li, H. J. Ryoo, J. S. Kim, G. H. Rim, Y. B. Kim, and J. Deng, “Development of Rectangle-Pulse Marx Generator Based on PFN”, IEEE Trans. Plasma Sci., Vol. 37, pp. 190–194, 2009.
[25] D. Wang, T. Namihira, K. Fujiya, S. Katsuki, and H. Akiyama, “The reactor design for diesel exhaust control using a magnetic pulse compressor”, IEEE Trans. Plasma Sci., Vol. 32, pp. 2038–2044, 2004. [26] T. G. Engel, and W. C.