Contents & References of Tracking multiple moving objects in moving camera images
List:
Chapter 1 Introduction - 1
Introduction - 2 Structure of tracking systems - 3
Camera - 3
Purpose - 5
How tracking systems work - 6
Algorithms without predictive properties - 6
Algorithms with predictive properties Nose- 7
Definition of the problem and the problems ahead - 8
How to solve the problem - 10
Chapter heads - 11
Chapter 2 Review of the conducted research - 14
Introduction - 15
Methods specific to fixed camera - 15
Background subtraction method - 15
Methods that can be used in a moving camera - 17
Mean Shift method - 17
CAM Shift method - 20
Visual flow method - 21
Page
Title
Chapter 3 Algorithms presented for detection - 24
Introduction - 25
The first proposed algorithm - 26 Motion compensation by block matching algorithms - 26
Concept of block matching algorithm - 27
Algorithms for searching corresponding blocks - 29
Obtaining moving image area - 33
Image segmentation by K-Means algorithm - 34
Flow chart of the first proposed algorithm - 37
Second proposed algorithm - 39
Building the scale space - 41
Using the LoG approximation - 44
Finding key points in the image - 46
Removing ineffective key points - 47
Harris corner detector - 47
Removing points with resolution Low sensitivity using Taylor expansion - 51
Orientation to selected key points - 53
Generation of SIFT features - 54
Chapter 4 Tracking by Kalman filter - 56
Introduction - 57
Kalman filter - 57
Movement type of targets - 61
Practical use of Kalman filter - 62
Page
Title
Chapter 5 Simulation and comparison - 66
Introduction - 67
Sequence of used frames - 68
First frame sequence - 69
Second frame sequence - 71
Third frame sequence - 73
Fourth frame sequence - 75
Fifth frame sequence - 78
Chapter 6 Results and suggestions - 82
Introduction - 83
Conclusion - 83
Suggestions - 84
List of references - 86
Source:
Wang, P. (2010, December). Moving Object Segmentation Algorithm Based on Edge Detection. In Computational Intelligence and Software Engineering (CiSE), 2010 International Conference on (pp. 1-4). IEEE.
Saravanakumar, S., Vadivel, A., & Saneem Ahmed, C. G. (2010, December). Multiple human object tracking using background subtraction and shadow removal techniques. In Signal and Image Processing (ICSIP), 2010 International Conference on (pp. 79-84). IEEE.
Zhao, C., & Reid, I. (2010). Mean-Shift Visual Tracking with NP-Windows Density Estimates. In proc. British Machine Vision Conference (BMVC).
Chen, J., An, G., Zhang, S., & Wu, Z. (2010, March). A mean shift algorithm based on modified Parzen window for small target tracking. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on (pp. 1166-1169). IEEE.
Zhao, J., Qiao, W., & Men, G. Z. (2009, July). An approach based on mean shift and Kalman filter for target tracking under occlusion. In Machine Learning and Cybernetics, 2009 International Conference on (Vol. 4, pp. 2058-2062). IEEE.
Chu, H., Ye, S., Guo, Q., & Liu, X. (2007, August). Object tracking algorithm based on camshift algorithm combining with difference in frame. In Automation and Logistics, 2007 IEEE International Conference on (pp. 51-55). IEEE.
Wang, A., Li, J., & Lu, Z. Improved Camshift with adaptive searching window. International Journal of Soft Computing, 2012
Li, D., Li, H., & Wei, X. (2010, October). Kalman filtering-based modified Cam-Shift vehicle tracking algorithm for highway traffic conditions. In Computer Application and System Modeling (ICCASM), 2010 International Conference on (Vol. 14, pp. V14-271).
Horn, B. K., & Schunck, B. G. (1981). Determining optical flow. Artificial intelligence, 17(1), 185-203.
Lucas, B. D., & Kanade, T. (1981, August). An iterative image registration technique with an application to stereo vision. In IJCAI (Vol. 81, pp. 674-679). Dos Santos Pinheiro, M. A. (2010). Multi-Object Tracking in Video Sequences (Doctoral dissertation, Universidade do Porto).
Kesrarat, D., & Patanavijit, V. Tutorial of Motion Estimation Based on Horn-Schunk Optical Flow Algorithm in MATLAB®.
Jung, Y. K., & Ho, Y. S. (2003, June). Active camera tracking system using affine motion compensation. In Visual Communications and Image Processing 2003 (pp. 1973-1966). International Society for Optics and Photonics.
Chan, M. H., Yu, Y. B., & Constantinides, A. G. (1990, August). Variable size block matching motion compensation with applications to video coding. In Communications, Speech and Vision, IEE Proceedings I (Vol. 137, No. 4, pp. 205-212). IET.
Atrianfar, H., Atrianfar, M., & Atrianfar, H. (2008). Temporal Resolution Enhancement of Video Sequences Using Transform Domain. In IPCV (pp. 185-190).
Ratnottar, J., Joshi, R., & Shrivastav, M. (2012, May). Review towards the Fast Block Matching Algorithms for Video Motion Estimation. In Communication Systems and Network Technologies (CSNT), 2012 International Conference on (pp. 153-156). IEEE.
Lu, J., & Liou, M. L. (1997). A simple and efficient search algorithm for block-matching motion estimation. Circuits and Systems for Video Technology, IEEE Transactions on, 7(2), 429-433.
Luo, Y., & Celenk, M. (2008, June). A hybrid block-matching approach to motion estimation with adaptive search area. In Systems, Signals and Image Processing, 2008. IWSSIP 2008. 15th International Conference on (pp. 85-88). IEEE.
Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2009). Digital image processing using MATLAB (Vol. 2). Knoxville: Gatesmark Publishing.
Adams, R., & Bischof, L. (1994). Seeded region growing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(6), 641-647.
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.
Vinukonda, P. (2011). A Study of the Scale-Invariant Feature Transform on a Parallel Pipeline (Doctoral dissertation, Louisiana State University).
Babaryka, A. (2012). Recognition from collections of local features (Doctoral dissertation, KTH).
Seo, N., & Schug, D. A. (2007). Image matching using scale invariant feature transform (SIFT). Final project report. University of Maryland, College Park, Maryland.
Lee, H., Heo, P. G., Suk, J. Y., Yeou, B. Y., & Park, H. (2009). Scale-invariant object tracking method using strong corners in the scale domain. Optical Engineering, 48(1), 017204-017204.
Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extreme regions. Image and vision computing,22(10), 761-767.
Harris, C., & Stephens, M. (1988, August). A combined corner and edge detector. In Alvey vision conference (Vol. 15, p. 50).
Matthews, J. (2002). An introduction to edge detection: The sobel edge detector. Generation5: January, 27. Brown, M., & Lowe, D. G. (2002, September). Invariant Features from Interest Point Groups. In BMVC (No. s 1).
Brown, M., Szeliski, R., & Winder, S. (2005, June). Multi-image matching using multi-scale oriented patches. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 510-517). IEEE.
Cui, Y., Hasler, N., Thorm?hlen, T., & Seidel, H. P. (2009). Scale invariant feature transform with irregular orientation histogram binning. In Image Analysis and Recognition (pp. 258-267). Springer Berlin Heidelberg.
Mahler, R. P. (2007).