Contents & References of Uncertainty estimation in robust position control of robotic arms
List:
Chapter One: Introduction..1
1-1- Review of past works. 2
Torque control strategy. 2
Voltage control strategy. 6
Emotional control. 14
Objectives. Mathematics of skilled mechanical arms. 19
..20
Kinematics. 20
2-2-1-Direct kinematics. 20
2-2-2-Inverse kinematics. 28
2-2-3- Velocity kinematics and Jacobian matrix. Dynamic modeling.31
Chapter three: Voltage control strategy..35
3-1- Introduction..36
3-2- Motion equations of the robotic system. 37
3-3- Control law in voltage control strategy.
3-5-Conclusion..44
Chapter Four: Uncertainty estimation using Fourier series.45
4-1- Introduction..46
4-2- Approximation of functions using Fourier series.47
4-3- Model-independent robust controller design.48
4-3-1- Proposed control law.49
4-3-2- Stability analysis. 4-4-3- Other periods of periodicity. 67
4-4-4- Periodic periods of Asm. 68
4-4-5- Non-periodic paths and external disturbance. 69
4-4-6- Comparison with neuro-fuzzy controller.
4-5-1- Tracing sinusoidal paths. 81
4-5-2- Tracing square paths. 84
4-6- Comparison of simulation and laboratory results. 86
4-7- Conclusion. 5-1- Introduction... 90
5-2- Approximation of functions using Legendre polynomials. 91
5-3- Classical resistant control in the work space using voltage control strategy. 93
5-4- Uncertainty estimation using Legendre polynomials. 97
5-5- Results Simulation...100
5-5-1- Classic resistive control.100
5-5-2- Suggested resistive control using Legendre functions.
5-5-3- Comparison with other voltage-based controllers [112]. First-order nonlinearity using emotional learning of the brain. 111 6-1- Introduction. 112 6-2- Mathematical modeling of emotional learning of the brain. 112 6-3- Design of control law and proof of stability. Conclusion..124
Chapter Seven: Conclusion and suggestions.127
1-7-Conclusion..128
7-2- Suggestions..131
List of references..133
Appendix A: Mathematical model of Maher Skara's arm. 151
Appendix B: Proof of chapter lemmas. 4.155
Appendix C: Boards ..161
Source:
Spong M. W., Hutchinson, S., and Vidyasagar M. (2006), “Robot modeling and control”, Wiley, Hoboken.
Slotine, J. J. and Li, W, (1991), “Applied nonlinear control”, Englewood Cliffs, NJ: Prentice-Hall. Qu, Z., and Dawson, D. M. (1996), “Robust tracking control of robot manipulators”, New York: IEEE Press. Sage, H.G., De Mathelin, M.F., and Ostertag, E. (1999), “Robust control of robot manipulators: a survey”, Int. J. Control. Vol. 72, No. 16, pp. 1498–1522.
Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M. (1991), “Survey of robust control for rigid robots”, IEEE Control Syst. Mag., Vol. 11, pp. 24–30. Corless M.J., (1993), “Control of uncertain nonlinear systems”, ASME Trans. J. Dyn. Syst. Meas. Control, Vol. 115, No, 2B, pp. 362-372.
Astrom K. J. and Wittenmark B., (1995), "Adaptive Control", Addison-Wesley, NewOrtega R., Spong M. W. (1988), "Adaptive motion control of rigid robots: a tutorial" Proceedings of the 27th conference on decision and control, pp. 1575-1584
Fateh, M. M. (2010). "Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model", Nonlinear Dynamics, Vol. 61, No. 4, pp. 655-666.
Fateh M. M., Azargoshasb S. and Khorashadizadeh S. (2014), "Model-free discrete control for robot manipulators using a fuzzy estimator", The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 33, No. 3, pp. 1-18. Fateh, M. M., Ahmadi, S. M., and Khorashadizadeh, S. (2014), “Adaptive RBF network control for robot manipulators”, Journal of AI and Data Mining, In Press. "Indirect fuzzy adaptive control for trajectory tracking of uncertain robots", Electric Machines and control, Vol. 10, No. 4, pp. 393-397.
Golea N., (2002), "Indirect fuzzy adaptive model-following control for robot manipulators", Proceedings of the 2002 IEEE international conference on control applications, pp. 198-202.
Qi R. and Brdys M. A. (2006), "Indirect adaptive fuzzy control for nonlinear systems with online modeling", Proc. Internat. Conf. Control, Glasgow, Scotland.
Hong-rui W., Zeng-wei C., Li-xin W., Xue-jing T., Xiu-ling L., (2007), "Direct adaptive fuzzy control for robots in cartesian space", Proceedings of Sixth International Conference on Machine Learning Cybernetics, pp. 482-486, Hong Kong.
Cho, Y.W., Seo, K.S., Lee, H.J., (2007), "A direct adaptive fuzzy control of nonlinear systems with application to robot manipulator tracking control", Int. J. Control. Autom. Syst, Vol. 5, pp. 630–642.
Er M.J. and Chin S.H., (2000), “Hybrid adaptive fuzzy controllers of robot manipulators with bounds estimation”, IEEE Trans. Ind. Electrn, Vol. 47, No. 5, pp. 1151-1160.
Yoo B.K. and Woon C. H., (2000), "Adaptive control of robot manipulators using fuzzy compensator", IEEE Trans. Fuzzy Syst, Vol. 8, No. 2, pp.186-199.
Kim E., (2004), "Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic", IEEE Trans. Fuzzy Syst, Vol. 12, No. 3, pp. 368-378.
Ham C., Johnson R., “Robust tracking control for robot manipulators”, IEE Proc., No. 2, pp. 212-216. IEEE Trans. 14, pp. 232-247. (2005), "Adaptive control of robot manipulators under actuator constraints", Fuzzy Sets and Systems, Vol. 152, pp. 651-664. Fuzzy Syst., Vol.12, pp. 552–560.
Kwan C., Lewis F.L., and Dawson D.M., (1998), “Robust neural-network control of rigid-link electrically driven robots”, IEEE Trans. Neural Netw., Vol. 9, pp. 581–588.
Lia, R. J., (2011), “Intelligent controller for robotic motion control,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5220–5230.
Mostefai L., Denai M., Oh S., and Hori, Y., (2009), “Optimal control design for robust fuzzy friction compensation in a robot joint,” IEEE Trans. Ind. Electron., Vol. 56, No. 10, pp. 3832–3839.
Chang Y.C., Yen H.M., Wu M.F., (2008), “An intelligent robust tracking control for electrically-driven robot systems”, Int. J. Systems Sci., Vol. 39, pp.