Contents & References of Time series loading
List:
Chapter One: Introduction
1-1- Importance of the problem. 2
1-2- Possible load distribution. 3
1-3- An overview of the work done 12
1-4- Objectives of the thesis. 24
1-5- Structure of thesis. 25
Chapter Two: Time Series
2-1- Introduction. 27
2-2- ARMA models. 27
2-2-1- Stationary and unstable processes 27
2-2-2- Moving average processes (MA) 29
2-2-3- Autoreversion processes (AR) 29
2-2-4- ARMA processes. 30
2-2-5- ARIMA processes. 30
2-2-6- SARIMA processes. 31
2-2-7- Multivariate ARMA processes. 31
2-3- Characteristics of time series model. 32
2-3-1- autocorrelation and partial autocorrelation functions. 32
2-3-2- Determining the stationarity and nonstationarity of time series using the ACF function. 35
2-3-3- Pattern identification using ACF and PACF functions. 36
2-3-4- The condition of stationarity and invertibility according to the coefficients of the model. 37
2-3-5- pattern recognition tests. 38
Chapter three: Time series load distribution
3-1- Introduction. 40
3-2- Possible load distribution. 41
3-3- Introduction of formulation load spreading method 4. 43
3-4- Formulation of the proposed method. 47
3-5- Simulation of the studied network. 51
3-5-1- Time series modeling of wind turbine output power. 52
3-5-2- Injection active and reactive power modeling. 55
3-5-3- Simulation results. 56
Chapter Four: Using time series load distribution to change the network structure with the aim of minimizing losses
4-1- Introduction. 67
4-2- The problem of network rearrangement in power systems. 68
4-3- Introduction of BPSO algorithm. 70
4-4- Using time series models in network reorganization. 71
4-5- Simulation results. 73
4-5-1- The studied network. 73
4-5-2- Results. 74
4-5-3- checking the correctness of the proposed method. 77
Chapter Five: Using DAR time series to model discrete parameters in the power system
5-1- Introduction. 83
5-2- Discrete variables in the power system. 84
5-2-1- Tap trans modeling. 84
5-2-2- Modeling of distributed CHP production units. 85
5-3- Discrete autoregressive processes (DAR) 87
5-3-1- Model introduction. 87
5-3-2- Selection of model grade. 88
5-3-3- checking the correctness of the selected model 90
5-3-4- estimation of unknown parameters in the model. 92
5-4- Simulation results. 93
Chapter Six: Conclusion and Suggestions
6-1- Conclusion. 99
6-2- Suggestions. 100
Appendix
7-1- IEEE 14-bus network information. 102
7-2- 69 bus network information. 104
Sources and References 108
Source:
[1] T. Boehme, A. R. Wallace, and G. P. Harrison, “Applying Time Series to Power Flow Analysis in Networks With High Wind Penetration,” IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 951–957, 2007.
[2] P. Chen, Z. Chen, and B. Bak-Jensen, “Probabilistic load flow: A review,” in Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008, 2008, pp. 1586–1591.
[3] G. J. Anders, “Probability Concepts in Electric Power Systems”, New York: Wiley, 1990.
[4] P. Chen, Stochastic Modeling and Analysis of Power System with Renewable Generation. Department of Energy Technology, Aalborg University, 2010.
[5] E. Rosenblueth, "Point estimates for probability moments", Proc. Nat. Acad. Sci., Vol. 72, pp. 3812–3814, Oct. 1975. [6] E. Rosenblueth, "Two-point estimates in probability", Appl. Math. Model. Vol. 5, pp. 329-335, Oct. 1981.
[7] K. S. Li, "Point-estimate method for calculating statistical moments", J. Eng. Mech.-ASCE, Vol. 118, No. 7, pp. 1506-1511, Jul. 1992. [8] M. E. Harr, "Probabilistic estimates for multivariate analysis", Appl. Math. Model., Vol. 13, No. 5, pp. 313-318, May. 1989.
[9] H. P. Hong, "An efficient point estimate method for probabilisticHong, "An efficient point estimate method for probabilistic analysis", Reliab. Eng. Syst. Saf., Vol. 59, No. 3, pp. 261-267, Mar. 1998.
[10] B. Borkowska, “Probabilistic load flow”, IEEE Trans. Power Apparatus and Systems, Vol. PAS-93, No. 3, pp. 752-755, May-Jun. 1974.
[11] R. N. Allan and M. R. G. Al-Shakarchi, “Probabilistic a.c. load flow", Proceedings of the Institution of Electrical Engineers, Vol. 123, No. 6, pp. 531-536, Jun. 1976.
[12] R. N. Allan and M. R. G. Al-Shakarchi, “Probabilistic techniques in AC load flow analysis”, Proc. IEEE PAS-124, pp. 154–160, Feb. 1976.
[13] R. N. Allan and A. M. Leite da Silva, “Probabilistic load flow using multilinearisations”, IEE Proc., Part C: Generation, Transmission and Distribution, Vol. 128, No. 5, pp. 280-287, Sep. 1981.
[14] A. P. S. Meliopoulos, G. J. Cokkinides and X. Y. Chao, “A new probabilistic power flow analysis method”, IEEE Trans. Power Systems, Vol. 5, No. 1, pp. 182-190, Feb. 1990. [15] A. M. Leite da Silva and V.L. Arienti, "Probabilistic load flow by a multilinear simulation algorithm", IEE Proc. Part C: Generation, Transmission and Distribution, Vol. 137, No. 4, pp. 276-282, Jul. 1990. [16] M. Brucoli, F. Torelli and R. Napoli, "Quadratic probabilistic load flow with linearly modeled dispatch", Electrical Power & Energy Systems, Vol. 7, No. 3, pp. 138-146, Jul. 1985.
[17] A. M. Leite da Silva, R. N. Allan, S. M. Soares, “Probabilistic load flow considering network outages”, IEE Proc., Part C: Generation, Transmission and Distribution, Vol. 132, No. 3, pp. 139-145, May. 1985.
[18] L. A. Sanabria and T. S. Dillon, “Stochastic power flow using cumulants and Von Mises functions,” International Journal of Electrical Power & Energy Systems, vol. 8, no. 1, pp. 47–60, Jan. 1986. [19] N. S. Rau and C. Necsulescu, “Solution of probabilistic load flow equations using combinatorics,” International Journal of Electrical Power & Energy Systems, vol. 12, no. 3, pp. 156–164, Jul. 1990. [20] P. Zhang and S.T. Lee, "Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion", IEEE Trans. Power Systems, Vol. 19, No. 1, pp. 676-682, Feb. 2004. [21] C.-L. Su, “Distribution probabilistic load flow solution considering network reconfiguration and voltage control devices,” in 15th Power Systems Computation Conference, Liege, 2005.
[22] N. D. Hatziargyriou, T. S. Karakatsanis, and M. I. Lorentzou, “Voltage control settings to increase wind power based on probabilistic load flow,” International Journal of Electrical Power & Energy Systems, vol. 27, no. 9–10, pp. 656–661, Nov. 2005.
[23] C. L. Su, “Probabilistic load-flow computation using point estimate method”, IEEE Trans. Power Systems, Vol. 20, No. 4, pp. 1843-1851, Nov. 2005.
[24] Z. Hu and X. Wang, “A probabilistic load flow method considering branch outages”, IEEE Trans. Power Systems, Vol. 21, No. 2, pp. 507-514, May. 2006. [25] J.M. Morales, J. Perez-Ruiz, "Point estimate schemes to solve the probabilistic power flow", IEEE Transaction on Power Systems, Vol. 22, No. 4, pp. 1594-1601, Nov. 2007.
[26] H. Liao, “Fast Deterministic Sampling for Mean and Covariance Estimation in Stochastic Load Flow”, IEEE Conference Power Engineering Society General Meeting, Tampa, FL, pp. 1-6, 24-28 June 2007.
[27] J. Schwippe, O. Krause, C. Rehtanz, "Extension of a Probabilistic Load Flow Calculation Based on an Enhanced Convolution Technique", IEEE Conference on Sustainable Alternative Energy, Valencia, pp. 1-6, 28-30 Sept 2009. [28] J.