Contents & References of Investigation of thermal effects on MEMS-based PLL and its compensation
List:
Chapter One: Microelectromechanical Systems
1-1 Introduction. 2
1-2 Definition of MEMS. 2
1-3 history. 4
1-4 miniaturization as the main feature of MEMS. 6
1-5 reasons and advantages of miniaturization in MEMS technology. 7
1-6 advantages of MEMS technology. 8
1-7 MEMS applications. 9
1-8 The need for development and progress in the field of MEMS. 12
1-9 Design and manufacturing technology of microelectromechanical systems. 13
1-9-1 Design. 13
1-9-2 manufacturing technology. 14
1-9-2-1 transferring the plan on the platform. 14
1-9-2-2 exfoliation. 14
1-9-2-3 layering. 15
1-10 materials used in MEMS. 16
1-10-1 silicon oxide SiO2 18
1-10-2 silicon nitride Si3N4 18
1-10-3 silicon carbide (SiC) 18
1-11 reasons for using silicon crystal in MEMS. 19
Chapter Two: Voltage Controlled Oscillators
2-1 Introduction. 21
2-2 voltage controlled oscillator (VCO) 21
2-3 types of oscillator. 22
2-4 LC-VCO. 24
2-5 vertical oscillator. 25
2-6 Q-VCO. 29
2-7 Phase noise and time jitter. 30
2-7-1 phase noise. 30
2-7-2 time jitter. 31
Chapter 3: phase lock loop
3-1 Introduction. 34
3-2 How PLL works. 34
3-3 PLL components. 34
3-4 phase detector. 35
3-5 PLL block diagram. 35
3-6 PLL relationships. 35
3-7 PLL applications. 37
3-8 MEMS-based PLL. 37
3-9 quartz crystal. 37
3-10 previous methods for thermal compensation. 40
Chapter Four: Simulation and Analysis of Results
4-1 Simulation. 51
4-2 Coding with PSO. 52
4-2-1 Coding with a neural network. 56
3-4 Results. 61
Chapter Five: Conclusion and Suggestions
5-1 Conclusion. 65
References. 67
Source:
S. P. Beeby, G. Ensel, and M. Kraft, 2004, “MEMS Mechanical Sensors”, Artech House.
D. S. Eddy and D. R. Sparks, 1998, “Application of MEMS Technology in automotive sensors and actuators,” Proceedings of the IEEE, vol. 86, pp. 1747-1755.
S. Kota and G. K. Ananthasuresh, S. B. Crary and K. D. Wise, "Design and Fabrication of Microelectromechanical Systems", Journal of Mechanical Design December 1994, vol. 116.
Ali Hajmiri and Thomas H. Lee, "The Design of Low Noise Oscillators"., Kluwer Academic Publishers, NewYork, Boston., 2003.
B. Z. Kaplen, "On the simplified implementation of quadrature oscillator models and the expected quality of their operation as VCO's," Proc. IEEE, vol. 68, pp. 745-746, 1980.
G. A. Korn and T. M. Korn, Electronic Analog and Hybrid Computers New York: McGraw-Hill, 2nd ed. 1972, p. 252.
R. Genin and J. Genin, "Nouveau modele d'oscillatoeur non Lineare donnant deux signales sinusoidaux en quadrature", C. R.Acad. Sci., series A, vol. 286, pp. 377-379, 1978.
B. Adkins, "The General Theory of Electrical Machines". London: Chapman and Hall, 1959.
M. K. Parasuram and B. Ramaswami, “A three phase sine wave reference generator for thyristorized motor controllers,” IEEE Trans. Ind. Electron. Contra. Instrument., vol. IEC-23, pp. 270-276, 1976.
Wei Tingcun; Chen Yingmei; Hu Zhengfei. Analog CMOS IC Design, Tsinghua University Press, 2010 : 267-271
Zhou, H. F.; Han, Y.; Dong, S. R.; Wang, C. H., “An Ultra-Low-Voltage High-Performance VCO in 0.13?m digital CMOS process,” Journal of Electromagnetic Waves and Applications, 2008, No. 17-18, vol. 22:2417-2426.
H. J. McSkimin, "Measurement of elastic constant at low temperature by means of ultrasonic waves data for silicon and germanium single crystals and for fused silica," J. Appl. Phys., vol. 24, no. 8, pp. 988-997, Aug. 1953.
Y.-H. Chuang, S.-H. Lee R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw.,16, no. 12, pp. 696-698. December 2006.
L. Lin and P. R. Gray, “A 1.4 GHz differential low-noise CMOS frequency synthesizer using a wideband PLL architecture,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2000, pp. 204-205, 458
M. Gradner, “Phase-lock Techniques. New York: Wiley”, in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2000, pp. 204-205, 45817.
H. J. McSkimin, "Measurement of elastic constant at low temperature by means of ultrasonic waves data for silicon and germanium single crystals and for fused silica," J. Appl. Phys., vol. 24, no. 8, pp. 988-997, Aug. 1953.
J. Wang, J. E. Butler, T. Feygelson, and C. T. C. Nguyen, “1.5 GHz Nanocrystalline diamond micromechanical resonator with material mismatched insulating support,” in Proc. IEEE MEMS 2004, Jan. 2004, pp.641-644.
K. Ho. Gavin, K. Sundaresan, S. Pourkamali, and F. Ayazi, "Micromechanical IBARs: Tunable High-Q Resonators for Temperature-Compensated Reference Oscillators", Georgia Institute of Technology, Atlanta, IEEE., January 31, 2010., JOURNAL OF MICRO ELECTROMECHANICAL SYSTEMS, VOL. 19, NO. 3, JUNE 2010.
R. Tabrizian, G. Casinovi and F. Ayazi, "Temperature-Stable High-QAIN-on-Silicon resonators with Embedded Array of Oxide Pillars," Solid-State Sensors, Actuators, and Microsystems workshop (Hilton Head 2010), June 2010, pp. 100-101.
R. Tabrizian, M. Pardo and F. Ayazi, “A 27 MHZ TEMPERATURE COMPENSATED MEMS OSCILLATOR WITH SUB-PPM INSTABILITY”, Georgia Institute of Technology, Atlanta, Georgia, USA, IEEE, 978-1-4673-0325-5, 2012.
K. Ho. Gavin, K. Sundaresan, S. Pourkamali, and F. Ayazi “Electronically Temperature Compensated Silicon Bulk Acoustic Resonator Reference Oscillators”, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, and is now with GE Global Research, Niskayuna, NY 12309 USA, IEEE. 2007., IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 6, JUNE 2007.
J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, and T.W. Kenny., "Real-Time Temperature Compensation of MEMS Oscillators Using an Integrated Micro-Oven and a Phase-Locked Loop"., JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 19, NO. 1, FEBRUARY 2010.