Contents & References of Presenting a method for right and left ventricle segmentation from cardiac MRI images
List:
Chapter One: Introduction
1-1- General.. 2
1-2- Human heart.. 7
1-2-1- Structure and function of the heart. 7
1-3-MRI imaging. 10
1-3-1- Cardiac MRI. 12
1-4- Justification of the necessity of carrying out the plan and work method. 14
1-5-Research issue from a medical point of view. 16
Chapter Two: Subject and Research Background
2-1-Introduction.. 18
2-2- Cardiac MRI image segmentation methods. 18
2-2-1- Automatic segmentation method. 20
2-2-2- semi-automatic methods. 22
2-2-2-1- Division with poor or no knowledge. 22
2-2-2-1-1- Image-based methods. 22
2-2-2-1-2- methods based on pixel classification. 23
2-2-2-1-3- variable models. 24
Title
2-2-2-1-4 Conclusion. 26
2-2-2-3- Division with strong knowledge. 27
2-2-2-3-1- Transforming the model with strong prior knowledge. 28
2-2-2-3-2- active form and appearance models. 28
2-2-2-3-3- segmentation based on atlas. 30
2-2-2-3-4- conclusion. 32
Chapter three: Right and left ventricle segmentation from heart MRI images
3-1- Introduction.. 38
3-2- PSO method.. 40
3-3- Structural operation. 44
3-4- Random browser method. 47
3-4-1- The weight of the edges. 50
3-4-2- Combined Dirichlet problem. 51
3-4-3- orbital analogy. 51
3-4-4- The connection between the method and the diffusion process in machine vision. 52
3-4-5- improved random navigation method. 54
3-4-6- Summary of the algorithm. 55
3-4-7- Features of the algorithm in theory. 55
3-4-8- behavioral characteristics. 57
3-4-8-1- Weak borders. 57
3-4-8-2- noise resistance. 58
3-4-8-3- Ambiguous and unlabeled areas. 59
Title page
Chapter Four: Examining the results
4-1- Introduction.. 61
4-2- Characteristics of the data. 61
4-3- How to implement the proposed method. 62
4-4- Discussion on the results of the proposed methods. 64
4-5- Technical review. 67
4-5-1- Dice coefficient. 69
4-5-2- Calculation of similarity. 70
4-6- Comparison with previous methods. 71
4-7- Conclusion.. 76
Chapter Five: Conclusion and Future Works
5-1-Introduction.. 78
5-2- Suggestions for future studies. 79
List of references
Source:
[1] Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., and Wylie-Rosett, J. (2010). Heart disease and stroke statistics, A report from the American Heart Association. Circulation, 121(7), e46-e62.
[2] Petitjean, C., Dacher, J. N. (2011). A review of segmentation methods in short axis cardiac MR images. Medical image analysis, 15(2), 169-184.
[3] Shors, S. M., Fung, C. W., François, C. J., Finn, J. P., and Fieno, D. S. (2004). Accurate Quantification of Right Ventricular Mass at MR Imaging by Using Cine True Fast Imaging with Steady-State Precession: Study in Dogs 1. Radiology, 230(2), 383-388.
[4] Ghose, S. (2009). Deformable Model based Computation of Ejection Fraction of Right Ventricle from Cine MRI (Doctoral dissertation, A Thesis Submitted for the Degree of M. Sc. Erasmus Mundus in Vision and Robotics, (VIBOT), University of Bourgogne). [5] Alfakih, K., Plein, S., Thiele, H., Jones, T., Ridgway, J. P., and Sivananthan, M. U. (2003). Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. Journal of Magnetic Resonance Imaging, 17(3), 323-329.
[6] Rougon, N., Petitjean, C., Prêteux, F., Cluzel, P., and Grenier, P. (2005). A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures.Medical Image Analysis, 9(4), 353-375.
[7] Cocosco, C. A., Netsch, T., Sénégas, J., Bystrov, D., Niessen, W. J., and Viergever, M. A. (2004, June). Automatic cardiac region-of-interest computation in cine 3D structural MRI. In International Congress Series,1268, 1126-1131.
[8] Huang, J., Huang, X., Metaxas, D., and Axel, L. (2007, April). Dynamic texture based heart localization and segmentation in 4-d cardiac images. In Biomedical Imaging: From Nano to Macro(ISBI), 852-855.
[9] Jolly, M. P. (2008). Automatic recovery of the left ventricular blood pool in cardiac cine MR images. In Medical Image Computing and Computer-Assisted Intervention–(MICCAI), 110-118.
[10] Pednekar, A., Kurkure, U., Muthupillai, R., Flamm, S., and Kakadiaris, I. A. (2006). Automated left ventricular segmentation in cardiac MRI. Biomedical Engineering, IEEE Transactions on, 53(7), 1425-1428.
[11] Gering, D. T. (2003). Automatic segmentation of cardiac MRI. In Medical Image Computing and Computer-Assisted Intervention-MICCAI, 524-532.
[12] Lin, X., Cowan, B. R., and Young, A. A. (2006). Automated detection of left ventricle in 4D MR images: experience from a large study. In Medical Image Computing and Computer-Assisted Intervention–MICCAI, 728-735.
[13] Jolly, M. P., Duta, N., and Funka-Lea, G. (2001). Segmentation of the left ventricle in cardiac MR images. In Computer Vision, 2001. ICCV 2001, 1, 501-508.
[14] Viola, P., and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001, 1, 511-518.
[15] Goshtasby, A., and Turner, D. A. (1995). Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers. Medical Imaging, IEEE Transactions on, 14(1), 56-64.
[16] Weng, J., Singh, A., and Chiu, M. Y. (1997). Learning-based ventricle detection from cardiac MR and CT images. Medical Imaging, IEEE Transactions on, 16(4), 378-391.
[17] Katouzian, A., Prakash, A., and Konofagou, E. (2006, August). A new automated technique for left- and right-ventricular segmentation in magnetic resonance imaging. In Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE, 3074-3077.
[18] Nachtomy, E., Cooperstein, R., Vaturi, M., Bosak, E., Vered, Z., and Akselrod, S. (1998). Automatic assessment of cardiac function from short-axis MRI: procedure and clinical evaluation. Magnetic resonance imaging, 16(4), 365-376.
[19] Gupta, A., Von Kurowski, L., Singh, A., Geiger, D., Liang, C. C., Chiu, M. Y., and Wilson, D. L. (1993, September). Cardiac MR image segmentation using deformable models. In Computers in Cardiology 1993, Proceedings, 747-750.
[20] Uzümcü, M., van der Geest, R. J., Swingen, C., Reiber, J. H., and Lelieveldt, B. P. (2006). Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming. Investigative radiology, 41(1), 52-62.
[21] Van der Geest, R. J., Jansen, E., Buller, V. G. M., and Reiber, J. H. C. (1994, September). Automated detection of left ventricular epi- and endocardial contours in short-axis MR images. In Computers in Cardiology, USA, 33-36.
[22] Yeh, J. Y., Fu, J. C., Wu, C. C., Lin, H. M., and Chai, J. W. (2005). Myocardial border detection by branch-and-bound dynamic programming in magnetic resonance images. Computer methods and programs in biomedicine, 79(1), 19-29.
[23] Liu, N., Crozier, S., Wilson, S., Liu, F., Appleton, B., Trakic, A., and Riley, R. (2006, January). Right ventricle extraction by low level and model-based algorithm. In Engineering in Medicine and Biology Society, IEEE-EMBS, 1607-1610.
[24] Geiger, D., Gupta, A., Costa, L. A., and Vlontzos, J. (1995).