Contents & References of Analysis and design of an improved full adder
List:
Abstract 1
The first chapter of the introduction. 2
1-1- Introduction: 3
1-2- Statement of the problem. 5
The second chapter of the digital collector. 7
2-1- Introduction: 8
2-2- Importance of adder: 8
2-3- Structure of digital adder: 8
2-3-1- Adder 9
2-3-1-1- Half adder 9
2-3-1-2- Full adder: 10
2-3-2- Binary adder: 12
2-3-3- Transmission of transfer digit: 13
2-4- Design parameters: 14
2-4-1- Power consumption. 14
2-4-1-2- Dynamic power: 14
2-4-1-3- Current caused by the direct path when changing the state of transistors: 15
2-4-1-3- Static power: 15
2-4-2- Propagation delay 15
2-4-3- PDP. 16
Chapter 3 methods proposed in the design of all digital adders 17
3-1- Introduction: 18
3-2- Dynamic and static logic 18
3-2-1- Dynamic CMOS logic, pre-charge-evaluation logic. 20
3-2-1-1- multi-floor dynamic circuit. 22
3-2-2- CMOS domino logic. 23
3-2-2-1- Time cycle of domino logic. 26
3-2-2-2- Load sharing 28
3-2-3- CMOS logic NORA (NP-CMOS) (DominoNP logic) 33
3-3- Examining a number of single-bit all-adder circuits. 36
3-3-1- Prominent dynamic single-bit all-adder circuits: 36
3-3-1-1- Single-bit all-adder circuit 17 NP transistors. 37
3-3-1-2- 16-transistor single-bit adder circuit. 38
3-3-1-3- full single-bit adder circuit of 16 PN transistors. 39
3-3-1-4- 18-transistor single-bit adder circuit. 40
3-3-1-5- 15-transistor single-bit adder circuit. 41
3-3-2- All circuits of static single bit adder: 42
3-3-2-1- C-CMOS all adder circuit. 42
3-3-2-2- All TGA adder: 43
3-3-2-3- All TFA adder: 44
3-3-2-4- All CLP adder: 45
The fourth chapter of the proposed method. 46
4-1- Introduction. 47
4-2- Methods to improve the full-adder circuit 47
4-2-1- Using dynamic logic 47
4-2-2- Using the advantages of load sharing 48
4-2-3- Using other advantages in order to improve 49
4-2-4- The structure of the single-bit all-adder is improved. 50
4-2-4-1 Analysis of the structure 50
4-3- Proposed adder circuits. 52
4-3-1- The circuit of the first proposed full adder. 52
4-3-2- The circuit of the second proposed full adder. 53
4-3-3- The circuit of the third proposed full adder. 53
4-4- Simulation. 54
4-4-1- Simulation results. 54
4-4-1-1- Presentation and comparison of input and output waveforms. 55
4-4-1-2- Power comparison. 61
4-4-1-3- delay comparison 62
4-4-1-4- PDP comparison. 63
Chapter Five Conclusion. 64
5-1- Conclusion: 65
List of references. 66
Source:
D.hodges, A. G. (2003). Analysis and design of digital integrated circuits. submicron technology.
Foroutan, V., Navi, K., & Haghparast, M. (2008). A New Low Power Dynamic Full Adder Cell Based on Majority Function. World Applied Sciences Journal, 133-141.
Frustaci, F., Corsonello p Perri, S., & Cocorullo, G. (2008). High-performance noise-tolerant circuit techniques for CMOS dynamic logic. Circuits, Devices & Systems, IET, 537 - 548
J. M. Rabaey, A. C. (2002). Digital Integrated Circuits - A Design Perspective.
J.Wang, S. (1994). design sf or XOR and XNOR functions on the transistor level. IEEEJ.Of Solid-State Circuits29, 780-786.
Kang, S.-M., & Leblebici, Y. (2014). CMOS Digital Integrated Circuits. SEM.
Kishore, K. L., & Prabhakar, V. S. (2009). vlsi design. New Delhi India: I K International Publishing House.
Mahapatra, p. a. (January 2014). low power noise tolerant domino 1-bit full adder. IEEE Energy Conversion Technologies (ICAECT,) 125-139.
Mahmoodi-Meimand, H. (2004). Diode-Footed Domino: A Leakage-Tolerant High Fan-in Dynamic Circuit Design Style. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 495-503.
Mano, M. M. (1979). Digital Logic andDigital Logic and Computer Design. the University of Michigan: Prentice-Hall.
Meeher, P., & Mahapatra, K. K. (2013). High-Speed ??and Low-Power Dynamic Logic Style. International Journal of VLSI and Embedded Systems-IJVES(2249 – 6556), 313-317.
Meher, P., & Mahapatra, K. (2013). A Low-Power Circuit Technique for Domino CMOS Logic. International Conference on Intelligent Systems and Signal Processing (ISSP), 256-261.
Navi, K., Moaiyeri, M. H., & Mirzaee, R. F. (2009). Two new low-power full adders based on majority-not gates. Microelectronics Journal, 126-130.
Po-Ming Lee, C.-H. H.-H. (2007). Novel 10-T full adders realized by GDI structure. Integrated Circuits, ISIC International Symposium, 115-118.
R. Faghih Mirzaee, M. H. (2010). High speed NP-CMOS and multi-output dynamic full adder cells. International Journal of Electrical and Electronics Engineering, IIII, 304-310.
R. Shalem, E. J. (1999). A NOVEL LOW POWER ENERGY RECOVERY FULL ADDER CELL. Proceedings. Ninth Great Lakes Symposium, 380-383.
R. Zimmermann, W. (1997). Low power logic styles CMOS versus pass transistor logic. IEEE Journal of Solid-State Circuits , 7(32), 1079-1090.
Subodh, W., Rajendra, K. N., & Sudarshan, T. (2011). NEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITS. International Journal of VLSI design & Communication Systems (VLSICS), 78-98.
Weste, N. a. (1993). Principles of CMOS VLSI Design. addison wesley.
Y. Jiang, A. A. (2004). A novel multiplexer-based low-power full adder. Circuits and Systems II: Express Briefs, 51(7), 345-348.
Sahib al-Zamani, M., Fathi, M., & Safaei, F. (1387). Digital VLSI design. Isfahan: Sheikh Baha'i.
Sadighi, M., Valizadeh, A., & Mehdipour, F. (2013). Digital electronics. Tehran: Amirkabir University of Technology.
Muridi, A. (2013). High speed low power all adder using NP-CMOS technique. National electronic conference of new achievements in engineering and basic sciences. Tehran: Zemin Kav Research Center.
Moridi, A., Salehi, M., & Safiri, M. (2013). Optimization of energy consumption in high-speed all-adder deck using NP-CMOS technique. National Conference on Optimizing Energy Consumption in Engineering Sciences. Babol: Babol Girls' Technical and Vocational College.
Mazaheri, S. P., & Harandi, H. (2012). Design of VLSI circuits. Tehran: Madrasan Sharif.