Contents & References of Using soft computing methods in the design of intelligent controllers
List:
Presentation A
Thanks and appreciation B
Abstract T
List of contents D
List of figures H
List of tables H
1: Introduction of basics and main concepts 1
1-1- Introduction. 2
1-2- Definition of soft computing (SC) 3
1-3- Objectives of soft computing. 4
1-4- The importance of soft computing. 5
2: Fuzzy computing, neural computing and algorithms based on genetics and particle swarm algorithm 6
2-1- Fuzzy logic. 7
2-1-1- The difference between fuzzy sets and classical sets. 8
2-1-2- Dry and non-dry sets. 9
2-1-3- description of fuzzy sets. 10
2-1-4- The process of using fuzzy logic. 11
2-1-5- Fuzzy logic and its connection with artificial intelligence. 13
2-2- neural networks. 14
2-2-1- An introduction to artificial neural networks. 14
2-2-2- similarity with the brain. 14
2-2-3- Artificial neural networks. 17
2-2-4- artificial nerve cell. 18
2-2-5- The structure of artificial neural networks and their function. 19
2-2-6- Division of neural networks based on structure. 21
2-2-7- Division of neural networks based on learning algorithm. 22
2-2-8- A general view on network education. 23
2-3- evolutionary optimization algorithms. 25
2-4- Genetic algorithm. 26
2-4-1- Introduction. 26
2-4-2- Chromosome display. 29
2-4-3- Encoding maps. 31
2-4-4- Population initialization. 32
2-4-5- Proportion function. 33
2-4-6- genetic operators. 34
2-4-7- selection methods. 38
2-5- Particle Swarm Algorithm (PSO) 40
3: Application of fuzzy logic in mobile robots 44
3-1- History. 45
3-2- Introduction. 45
3-3- Reasons for using fuzzy controllers. 46
3-4- The structure of a fuzzy controller. 47
3-5- Fuzzy methods used in robots. 49
3-5-1- position control in moving robots. 50
4: controller design based on soft computing 56
4-1- Soft computing techniques. 57
4-2- Feedback control proportional to derivative and acceleration. 60
4-3- Multivariable fuzzy logic controllers. 62
4-4- Fuzzy neural control systems (HFNC) 63
4-4-1-Radial basis function neural model training (RBFNN). 65
References and source: 69
Source:
[[1]] D.A. Linkens, H.O. Nyongesa, Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications, IEE Proc. Control Theory Appl. 143 (3) (1994) 367–386.
[[1]] R. Bill VT. Jackson, translation: M. Al-Barzi, familiarity with neural networks, third edition, Sharif University of Technology Publications, 138, 1386.
[[1]] A. Guderzond Chegini, MATLAB Toolbox, first edition, Naqos Publications, Tehran, 2014, 223.
[[1]] B. Subudhi, A.S. Morris, Fuzzy and neuro-fuzzy approaches to control a flexible single-link manipulator, J. Syst. Control Eng. Proc. IMechE 217 (2003) 387–399.
[[1]] Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press.
[[1]] Renders, J. M., & Flasse, S. P. (1996). Hybrid methods using genetic algorithms for global optimization. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(2), 243-258.
[[1]] Teodorescu, H. N. L., Kandell, A., & Jain, L. C. (Eds.). (1999). Soft-computing in Human-related Sciences (Vol. 8). CRC press.
[[1]] Mitchell, M. (1998). An introduction to genetic algorithms (complex adaptive systems). swarm optimization, in: IEEE Conf. on Neural Networks, 1942-1948, M. Jamshidi,Jamshidi, Autonomous control of complex systems: robotic applications, Applied Mathematics and Computation, vol. 120, Issues 1–3, 10 May 2001, pp. 15-29.
[[1]] G. Feng, A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Syst. Man Cybernetics 14 (5) (2006) 676–696.
[[1]] J. Lin, F.L. Lewis, Fuzzy controller for flexible-link robot arm by reduced-order techniques, IEE Proc. Control Theory Appl. 149 (3) (2002) 177–187.
[[1]] F.M. Caswara, H. Unbehauen, A neuro-fuzzy approach to the control of a flexible-link manipulator, IEEE Trans. Syst. Man Cybernetics 18 (6) (2002) 932–944
[[1]] W.T. Miller, R.S. Sutton, P.J. Werbos, Neural Networks for Control, MIT Press, Cambridge and MA, (1990).
[[1]] M. Brown, C. Harris, Neuro-fuzzy Adaptive Modeling and Control, Prentice-Hall Int. Ltd., London, (1994) Ltd., London, (1994).
[[1]] F. Sun, Z. Sun, L. Li, H. Li, Neuro-fuzzy adaptive control based on dynamic inversion for robotic manipulators, Fuzzy Sets Syst. 134 (1) (2003) 117–133.
[[1]] W.T. Miller, R.S. Sutton, P.J. Werbos, Neural Networks for Control, MIT Press, Cambridge and MA, (1990).
[[1]] G. Feng, A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Syst. Man Cybernetics 14 (5) (2006) 676–696.
[[1]] L. Tian, ??C. Collins, Adaptive neuro-fuzzy control of a flexible manipulator, Mecha-tronics 15 (10) (2005) 1305–1320.
[[1]] R.-J. Wai, M.-C. Lee, Intelligent optimal control of single-link flexible robot arm, IEEE Trans. Ind. Electron. 51 (1) (2004) 201–220.
[[1]] S. Sarraf, A. Fallah, T. Seyedena, A neurofuzzy controller for a single link flexible manipulator, Lecture notes in computer science, Artificial neural networks, ICANN 2007, vol. 4669, Springer, Berlin/Heidelberg, (2007), pp. 621–629.
[[1]] R.-J. Wai, M.-C. Lee, Intelligent optimal control of single-link flexible robot arm, IEEE Trans. Ind. Electron. 51 (1) (2004) 201–220.
[[1]] H.A. Talebi, K. Khorasani, R.V. Patel, Neural Network based control schemes for flexible-link manipulators: simulations and experiments, "neural net-works", special issue, Neural Control Robotics: Biol. Technol. 11 (1998) 1357–1377.
[[1]] A. Mannani, H.A. Talebi, A fuzzy Lyapunov-based control strategy for a macro-micro manipulator: experimental results, IEEE Trans. Control Syst. Technol. 15 (2) (2007) 375–383.
[[1]] W.T. Miller, R.S. Sutton, P.J. Werbos, Neural Networks for Control, MIT Press, Cambridge and MA, (1990).
[[1]] V.G. Moudgal, K.M. Passino, S. Yourkovitch, Rule-based control for flexible-link robot, IEEE Trans. Control Syst. Technol. l2 (4) (1994) 393–405.
[[1]] J. Lin, F.L. Lewis, Fuzzy controller for flexible-link robot arm by reduced-order techniques, IEE Proc. Control Theory Appl. 149 (3) (2002) 177–187.
[[1]] C.C. Lee, Fuzzy logic in control systems—part I, IEEE Trans. Syst. Man Cybernetics 20 (2) (1990) 404–415.
[[1]] W.T. Miller, R.S. Sutton, P.J. Werbos, Neural Networks for Control, MIT Press, Cambridge and MA, 1990.
[[1]] M. Brown, C. Harris, Neuro-fuzzy Adaptive Modeling and Control, Prentice-Hall Int. Ltd., London, 1994.
[[1]] Subudhi, B., & Morris, A. S. (2009). Soft computing methods applied to the control of a flexible robot manipulator. Applied Soft Computing, 9(1), 149-158.
[[1]] Su, T., Jhang, J.