Contents & References of Preconcentration of raloxifene drug by liquid phase microextraction method using hollow fiber and drug measurement by HPLC method in trace amounts
List:
Persian Summary .. 1
Introduction .. 3
Chapter One: Generalities
1-1. statement of the problem 6
1-2. Goals. 6
Chapter Two: Examining the texts and studies of others in this field
2-1. An overview of liquid-liquid extraction and liquid-liquid microextraction methods. 8
2-1-1. Liquid phase microextraction. 9
2-1-1-1. Single-drop liquid phase microextraction 9
2-1-1-2. Hollow fiber liquid phase microextraction (HF-LPME) 11
2-1-1-2-1. Extraction principles and different systems using HF-LPME. 12
2-1-1-2-2. Practical aspects and different configurations of HF-LPME. 15
2-1-1-2-3. Hollow fiber headspace liquid phase microextraction. 18
2-1-1-3. Liquid phase microextraction using the freezing of extractant solvent 21
2-1-1-4. Dispersive liquid-liquid phase microextraction (DLPME) 21
2-1-2. Solid phase extraction. 22
2-2. Chromatography. 22
2-2-1. Classification of chromatography methods. 23
2-2-1-1. High Performance Liquid Chromatography (HPLC) 23
2-2-1-2. Liquid chromatography devices. 25
2-2-1-2-1. Mobile phase tank. 26
2-2-1-2-2. Pumping systems 26
2-2-1-2-3. Sample injection systems. 27
2-2-1-2-4. Liquid chromatography columns. 28
2-2-1-2-5. Piston temperature. 29
2-2-1-2-6. Detectors 29
2-3. Review of HF-LPME studies. 33
2-4. Review of the study drug. 35
2-4-1. Pharmacokinetics of the drug 35
2-4-2. Mechanism of drug action 35
2-4-3. Uses of medicine 36
2-4-4. Contraindications and precautions. 36
2-4-5. side effects 36
2-4-6. Interferences. 36
2-4-7- Dosage. 36
2-5. The importance of measuring raloxifene. 37
Chapter Three: Materials and Methods
3-1. Chemicals and equipment. 39
3-1-1. Chemicals, standards and real samples. 39
3-1-2. Device equipment. 39
3-2. Extraction method. 40
3-2-1. Briefly, the extraction was done in the following steps: 41
3-2-2. Optimization steps. 42
3-2-2-1. Optimization of isolation conditions. 42
3-2-2-2. Optimizing extraction conditions. 42
3-2-2-2-1. Type of organic solvent. 43
3-2-2-2-2. The pH effect of the donor phase 43
3-2-2-2-3. The pH effect of the receptor phase 43
3-2-2-2-4. The effect of ionic strength of phase donor 43
3-2-2-2-5. The effect of stirring the analyte solution. 43
3-2-2-2-6. Effect of extraction time. 43
3-2-2-2-7. Effect of temperature on extraction. 43
3-2-3. Evaluating the efficiency of the extraction method. 44
3-2-3-1. Grading curve. 44
3-2-3-2. Determination of preconcentration factor (PF) 44
3-2-3-3. Determination of repeatability (RSD) 45
3-2-4. Real sample analysis. 45
Chapter Four: Results
4-1. Three-phase microextraction based on the use of porous hollow fiber. 47
4-1-1. Principles of theory. 47
4-2. Optimization steps. 50
4-2-1. Optimization of isolation conditions. 50
4-2-2. Optimizing extraction conditions. 51
4-2-2-1. Type of organic solvent. 51
4-2-2-2. The pH effect of the receiver phase and the donor phase 53
4-2-2-3. The effect of stirring speed of the analyte solution. 55
4-2-2-4. The effect of ionic strength of phase giver 57
4-2-2-5. Effect of extraction time. 58
4-2-2-6. Effect of extraction temperature. 59
4-3. Determining the analytical parameters of the extraction method. 60
4-3-1. Preparation of grading curve. 61
4-3-2. Pre-concentration factor (PF) and recovery percentage (R%) 61
4-3-3. Limit of detection (LOD) 63
4-3-4. Reproducibility of method (RSD) 63
4-4- Real sample analysis. 64
Chapter Five: Discussion and Conclusion
5-1. Comparison of the extraction method with the reported methods of other sources. 66
5-2. conclusion 69
Resources.. 70
English summary.. 83
Appendices.
Source:
Anthony, J., Bertram, J., Katzung, S. B., Arjamand, M., Amin Asanafi, G., 2017, Pharmacology of Katzong and Trevor, 8th edition, Arjamand, p. 135-140.
Skoog, D. A., Haller, F. J., Nieman, T. E., Selajgeh, A. R., 1383, Principles of Systematic Analysis, Academic Publishing Center, Volume II, p. 538 to
Abulhassani, J., Manzoori, J. L., Amjadi, M, 2010, Hollow Fiber Based-Liquid Phase Micro Extraction Using Ionic Liquid Solvent for Pre-Concentration of Lead and Nickel From Environmental and Biological Samples Prior to Determination by ElectroThermal Atomic Absorption Spectrometry, J. Hazardous Materials, vol. 176, P. 481-486.
Andersen, S., Halyorsen, T. G., Pedersen-Bjergaard, S., Rasmussen, K. E., Tanum, L., Refsum, H., 2003, Stereospecific Determination of Citalopram and Desmethylcitalopram by Capillary Electrophoresis and Liquid Phase Micro Extraction, J. pharm. Biomed., No. 33, P. 263.
Barahona, F., Gjelstad, A., Pedersen-Bjergaard, S., Rasmussen, K. E., 2010, Hollow Fiber Liquid Phase Micro Extraction of Fungicide from Orange Juices, J. Chromatogr. A., vol. 1217, P. 4781.
Borman, SA, 1983, Diode Array Detection in HPLC, Chem., vol. 55, p. 836.
Brown, PR., 1973, High pressure Liquid Chromatography: Biochemical and Biomedical Applications, New York: Academic press; p. 91-112.
Brown, PR., Hartwick RA., 1988, High Performance Liquid Chromatography, New York: Wiley, Chapter 6, p. 300-309.
Chang, C. H., Tsen, C. W., Hsien, D. W., 2009, Determination of Perchlorate in River by Ion Pair Hollow Fiber liquid phase Microextraction Coupled with Electrospray Ionization Tandem Mass Spectrometry, Talanta, vol. 79, p. 442.
Chia, K. J., Huang, S. D., 2006, Simultaneous Derivatization and Extraction of Primary Amines in River Water with Dynamic Hollow Fiber LPME Followed by GC/ME, J. Chromatogr A., ??vol. 1103, p. 158-161.
Cummings, J., Lefevre, G., Small, G., Appel-Dingemanse, S., 2007, Pharmacokinetic rationale for the raloxifene, 69(4 Suppl 1), p. 15–23.
Dean, J. R., 2010, Extraction Techniques in Analytical Sciences, John Wiley and Sons, p. 201-236.
Dorsey, J. G., Cooper, W. T., 1994, Retention mechanism of bonded-phase liquid chromatography, J. Anal. Chem., vol. 66, p. 857.
Ebrahimzadeh, H., Yamini, Y., Firozjaei, H. A., Kamarei, F., Tavassoli, N., Rouini, M.R., 2010, Hollow Fiber-Based Liquid Phase Micro Extraction Combined with High Performance Liquid Chromatography for the analysis of gabapentin in Biological Samples, J. Anal. Chim. Acta, vol. 665, p. 221.
Ebranimzade, H., Asgharinezhad, A. A., Abedi, H., Kamarei, F., 2011, Optimization of Carrier Mediated Three Phase Hollow Fiber Micro Extraction Combined with HPLC-UV for Determination of Propylthiouracil in Biological Samples, Talanta, vol. 85, p. 1043.
Emidio, E.S., Prata, V. D., de Santana F. J., Dorea, H. S., 2010, Hallow fiber-based liquid phase micro extraction with factorial design optimization and gas chromatography-tandem mass spectrometry for determination of cannabinoid in human hair, J. Chromatogr. B, p. 2175.
Engelhardt, H., 1986, Practice of High Performance Liquid Chromatography: Applications, Equipment and Quantitative Analysis, New York: Springer verlag; Chapter 1. p. 195-206.
Frankfort, S.V., M. Ouwehand, M.J. van Maanen, H., Rosing, C.R. Tullner, J.H. Beijnen, 2006, Rapid Communications in Mass Spectrometry, vol. 20, p. 3330-3336
Freitas, D. F., Porto, C. E. D., Viera, E. P., Siquera, M. E. P. B., 2010, Three Phase, Liquid Phase Micro Extraction Combined with HPLC-Fluorescence Detection for the Simultaneous Determination of Fluoxetine and NorFluoxetine in Human Plasma, J. Pharma and Biomed Analysis, vol. 51, p. 170.
Ghambarian., M., Yamini, Y., Esrafili, A., 2011, Three Phase Hollow Fiber Liquid Phase Micro Extraction Based on Two Immiscible Organic Solvents for Determination of Tramadol in Urine and Plasma Samples, J. Pharmaceutical and Biomedical Analysis, vol. 56, p.1041.
Ghasemi, E., Najsfi, N. M., Raofie, F., Ghassempour, A.