Contents & References of Pre-concentration of aripiprazole drug by liquid phase and hollow fiber microextraction method and measurement of drug amount in plasma and urine by HPLC method in trace amounts
List:
Persian summary.. 1
Introduction .. 2
Chapter one: generalities
1-1. The necessity and importance of the subject. 5
1-2. Statement of the problem.. 5
1-3. Objectives.. 6
Chapter Two: Examining the texts and studies of others in this field
2-1. An overview of liquid-liquid extraction and liquid-liquid microextraction methods. 8
2-1-1. Liquid phase microextraction. 8
2-1-1-1. Single-drop liquid phase microextraction. 8
2-1-1-2. Hollow fiber liquid phase microextraction. 11
2-1-1-2-1. Extraction principles and different systems using HF-LPME. 12
2-1-1-2-2. Practical aspects and different configurations of HF-LPME. 15
2-1-1-2-3. Hollow fiber headspace liquid phase microextraction. 18
2-1-1-3. Liquid phase microextraction using extractant solvent freezing. 21
2-1-1-4. Dispersive liquid-liquid phase microextraction (DLPME). 21
2-1-2. Solid phase extraction.. 22
2-2. Chromatography.. 22
2-2-1. Classification of chromatography methods. 23
2-2-1-1. High Performance Liquid Chromatography (HPLC). 23
2-2-1-2. Liquid chromatography devices. 25
2-2-1-2-1. Mobile phase tank. 26
2-2-1-2-2. Pumping systems. 26
2-2-1-2-3. Sample injection systems. 27
2-2-1-2-4. Liquid chromatography columns. 28
2-2-1-2-4-1. Types of column fillers. 29
2-2-1-2-5. Piston temperature.. 29
2-2-1-2-6. detectors.. 29
2-2-1-2-6-1. Photometric detector. 30
2-2-1-2-6-2. Ultraviolet (UV) absorption detector. 31
2-3. Review of HF-HPME studies. 32
2-4. Review of the study drug. 36
2-4-1. Drug pharmacokinetics.. 36
2-4-2. Mechanism of drug action.. 37
2-4-3. Uses of medicine.. 37
2-4-4. Dosage of medicine.. 38
2-4-5. Contraindications and precautions. 39
2-4-6. Side effects.. 39
2-4-7. Interferences.. 40
2-4-8. Medicinal forms.. 41
2-4-9. Physical properties of the drug. 41
2-5. The importance of measuring aripiprazole. 42
2-6. Objectives.. 42
Chapter Three: Materials and Methods
3-1. Chemicals and equipment. 44
3-1-1. Chemicals, standards and real samples. 44
3-1-2. Device equipment.. 44
3-2. Extraction method.. 45
3-2-1. Briefly, the extraction was done in the following steps. 45
3-2-2. Optimization steps.. 47
3-2-2-1. Optimization of isolation conditions. 47
3-2-2-2. Optimizing extraction conditions. 47
3-2-2-2-1. Type of organic solvent.. 47
3-2-2-2-2. Effect of pH of the donor phase. 47
3-2-2-2-3. Effect of pH of the receptor phase. 47
3-2-2-2-4. The effect of ionic strength of the phase donor. 48
3-2-2-2-5. The effect of stirring the analyte solution. 48
3-2-2-2-6. Effect of extraction time. 48
3-2-2-2-7. Effect of temperature.. 48
3-2-3. Evaluating the efficiency of the extraction method. 48
3-2-3-1. Grading curve. 48
3-2-3-2. Determination of preconcentration factor (PF). 49
3-2-3-3. Repeatability determination (RSD). 49
3-2-4. Real sample analysis.. 49
Chapter Four: Results
4-1. Three-phase microextraction based on the use of porous hollow fiber. 51
4-1-1. Principles of theory.. 51
4-2. Optimization steps.. 54
4-2-1. Optimization of isolation conditions. 54
4-2-2. Optimizing extraction conditions. 55
4-2-2-1. Type of organic solvent.. 55
4-2-2-2. Effect of pH of acceptor phase and donor phase. 56
4-2-2-3. The effect of stirring speed of the analyte solution. 58
4-2-2-4. The effect of ionic strength of the phase donor. 59
4-2-2-5. The effect of extraction time.. 61
4-2-2-6. Effect of temperature.. 61
4-3. Determining the analytical parameters of the extraction method. 63
4-3-1. Preparation of grading curve. 63
4-3-2. Preconcentration factor (PF). 64
4-3-3. Determination of the limit of detection (LOD). 65
4-3-4. Repeatability of the method (RSD). 66
4-4. Real sample analysis.. 66
Chapter five: discussion and conclusion
5-1. Comparison of the extraction method with the reported methods of other references. 71
5-2. Conclusion.. 73
English summary.. 76
Resources..77
Appendixes
Source:
Sources:
Alders. L. Liquid-Liquid Extraction: Theory and Laboratory Experiments, 2nd ed. London: Elsevier Pub.Co; 1955. P.109-205.
Dean. J. R. Extraction Techniques in Analytical Sciences, Boston: John Wiley and Sons; 2010. P. 55.
Kokosa. J. M. A, Jeannot. M. A. Solvent Microextraction: Theory and practice. Boston: John Wiley and Sons; 2009. P. 17-35.
Liu. H. H, Dasgupta. P. K. Analytical chemistry in a drop solvent extraction in a micro drop. Anal. Chem., 1996; 68:11817.
Jeannot. M. A, Cantwell. F. F. Solvent microextraction in a single drop. J. Anal. Chem., 1996; 68:2236.
Jeannot. M. A, Cantwell. F. F. Mass transfer characteristics of solvent extraction in a single drop at the tip of a syringe. Anal. Chem., 1997; 68: 4634.
Shrivas. K, Wu. H.f. Single drop microextraction as a concentrating probe for rapid screening of low molecular weight drugs from human urine. J. Anal. Chem. Acta, 2007; 605:153.
Ma. M. H, Cantwell. F. F. Solvent micro extraction with simultaneous back-extraction for sample clean up and preconcentration quantitative extraction.J. Anal Chem, 1999; 71:388.
Theis. A. L, Waldack. A.J., Hansen. S. M, Jeannot. M. A. Headspace solvent microextraction. J. Anal. Chem., 2001; 73: 5651.
Yu.Y. K [et al]. Multiple headspace single drop micro extraction coupled with gas chromatography for direct determination of residual solvents in solid drug product. J. Chromatographia. A. 2010; 1217:5158.
Li. Y, Xiong.Y.Q, Liang.W.Y, Fang.C.C, Wang. C. J. Low density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction combined with gas chromatography. J. Chromtographia. A, 2010; 1217:3561.
Pedersen-Bjergaard.S, Rasmussen.K. E. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. J. Anal. Chem., 1999; 71:2650.
Rasmussen. K. E, Pedersen-Bjergaard. S, Krogh. M, Uganda. H. G. Gronhaug. T. Supported liquid membranes in hollow fiber liquid-phase microextraction (LPME) practical considerations in three phase mode. J. Chromatographia. A, 2000; 873:3.
Rasmussen. K. E, Pedersen-Bjergaard. S. Developments in hollow fiber-based liquid-phase microextraction. J. Anal. Chem., 2004; 23:1.
Zhao. L, Lee. H. K. Liquid phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chrpmatography-MS. J. Anal. Chem., 2002; 74:2486.
Hou. L, Shen. G, Lee. H, k. Automated hollow fiber-protected dynamic liquid-phase micro extraction of pesticides for GC-MS analysis. J. Chromatographia. A, 2003; 985:107.
Hou. L, Lee. H. K. Dynamic three-phase microextraction as a sample preparation technique prior to capillary electrophoresis. J. Anal. Chem. 2003; 75:2784.
Wu. H. F, Yen. J.h. Dynamic liquid phase nanoextraction coupled to GC/MS for rapid analysis of methoxyacetophenone and anisaldehyde isomer in urine. J. Sept. Sci., 2008; 31:2295.
Jiang. X. M, Oh. S. Y, Lee. H. K. Dynamic liquid-liquid-liquid microextraction with automated movement of the acceptor phase. J. Anal. Chem., 2005; 77:1689.
Xu. LK, Hauser. P. C, Lee. H. K. Electro membrane isolation of nerve agent degradation products across a supported liquid membrane followed by capillary electrophoresis with contactless conductivity detection. J. Chromatographia. A, 2008; 1214:17.
Kramer. KE, Andrews. A. R. J. Screening method for 11-nor-?9-tetrahydrocannabinol-9-carboxylic acid in urine using hollow fiber membrane solvent microextraction with in-tube derivatization. J. Chromatographia. B, 2001; 760:27.