Contents & References of Comparison of electron transfer of choline oxidase enzyme by three types of carbon nanotubes
List:
First chapter 1
1-1. Choline oxidase enzyme 2
1-1-1. Enzyme introduction. 2
1-1-2. History. 2
1-1-3. Enzymatic reaction. 3
1-1-4. The active site of the enzyme. 3
1-1-5. Importance of study. 4
1-2. Biosensor 7
1-2-1. first generation 8
1-2-2. second generation 9
1-2-3. The third generation. 10
1-3. Electrochemical techniques 10
1-3-1. Voltammetry or amperometry. 10
1-3-2. Cyclic voltammetry. 11
1-3-3. Chronoamperometry. 12
1-4. Carbon nanotubes 13
1-4-1. introduction 13
1-4-2. Structure. 13
1-4-3. Special properties of carbon nanotubes. 14
1-4-4. Types of carbon nanotubes. 15
1-4-5. Synthesis of carbon nanotubes. 19
1-4-5-1. electric arc 19
1-4-5-2. Laser abrasion. 20
1-4-5-3. Chemical vapor deposition. 21
1-4-6. Purification of carbon nanotubes 23
1-4-6-1. Oxidation. 23
1-4-6-2. acid work 24
1-4-6-3. Annealing. 24
1-4-6-4. Using ultrasonic vibrations. 24
1-4-6-5. Magnetic filtration. 25
1-4-6-6. Microfiltration. 25
1-4-7. Functionalization of carbon nanotubes 25
1-4-7-1. The necessity of functionalizing nanotubes and its methods. 26
1-4-7-2. Methods of verifying the functionalization of nanotubes 27
1-4-7-2-1. Raman spectroscopy. 27
1-4-7-2-2. FT-IR spectroscopy. 30
1-5. Using ionic liquids as stabilizers 31
1-6. The purpose of the research: 34
Chapter Two. 36
Materials and methods 36
2-1. Material. 37
2-2. Equipment and devices: 38
2-3-1. Functionalization of nanotubes 39
2-3-2. Preparation of carbon nanotube suspension. 40
2-3-3. Electrode preparation. 40
2-3-4. Stabilization method. 41
2-3-5. Voltammetry studies of protein film 41
2-3-6. Measurement of enzyme activity 42
2-3-7. Preparation of electron microscope images 43
Chapter three. 44
Results. 44
3-1. The degree of functionalization of nanotubes 45
3-2. Surface morphology of electrodes modified with nanotubes 50
3-3. Direct electron transfer of enzyme on modified electrodes with nanotubes 55
3-4. The reversibility of the oxidation reaction and enzyme reduction 57
3-5. The amount of electroactive enzyme on electrodes modified with nanotubes 57
3-6. Effective stabilization of enzyme on carbon nanotubes 58
3-7. Electron transfer rate of enzyme immobilized on nanotube and ionic liquid 61
3-8. Electrocatalytic activity of enzyme on electrodes modified with carbon nanotubes 63
Chapter IV. 66
Discussion and suggestions. 66
4-1. Functionalization of nanotubes 67
4-2. Comparison of analytical parameters of sensors designed with three types of carbon nanotubes 69
4-2-1. Linear range. 70
4-2-2. sensitivity 71
4-2-3. Detection limit. 72
4-3. Comparison of enzyme electron transfer 72
4-3-1. The amount of electroactive enzyme immobilized on carbon nanotubes. 73
4-3-2. Electron apparent speed constant (ks) 74
4-3-3. Comparison of formal potential changes in three types of biosensors. 75
4-4. Conclusion 77
Source:
1. M. Daenen, R.D.d.F, B. Hamers, P.G.A. Janssen, The Wondrous World of Carbon Nanotubes. Eindhoven University of Technology, 2003.
2. Chaplin, M., What are biosensors? Faculty of Engineering, Science and the Built Environment, December 20, 2004.
3. Sharareh Sajjadia, H.-A.R.-P., Parvaneh Rahimib, Hedayatollah and A.-H.K. Ghourchianb, Electrochemistry and Electrocatalysis of Choline Oxidase Based on Ionic-liquid/NH2-MWCNTs Nano-composite. 2011.
4. Niyogi, S., et al., Chemistry of single-walled carbon nanotubes. Accounts of chemical research, 2002. 35(12): p. 1105-1113.
5. S. Lutz-Wahl, et al., Performance of d-amino acid oxidase in the presence of ionic liquids, Journal of Biotechnology, 2006. 124(1): p.
6. Bernheim, F. and M.L.C. Bernheim, Oxidation of acetylcholine by tissues. American Journal of Physiology-Legacy Content, 1933. 104(2): p. 438.
7. Bernheim, F. and M.L.C. Bernheim, The choline oxidase of liver. American Journal of Physiology-Legacy Content, 1937. 121(1): p. 55.
8. IKUTA, S., et al., Purification and characterization of choline oxidase from Arthrobacter globiformis. Journal of Biochemistry, 1977. 82(6): p. 1741.
9. F. Fan, a.G.G., An internal equilibrium preorganizes the enzyme-substrate complex for hydride tunneling in choline oxidase. Biochemistry, 2007. 46: p. 6402-6408.
10. Northrop, D.B., Enzymatic mechanisms. Vol. 27. 1999: iOS Pr Inc.
11. Umezawa, T., et al., Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 2006. 17(2): p. 113-122.
12. Sharma, P. and R. Shanker Dubey, Modulation of nitrate reductase activity in rice seedlings under aluminum toxicity and water stress: role of osmolytes as enzyme protector. Journal of plant physiology, 2005. 162(8): p. 854-864.
13. Hoffmann, Vitamin Nutrition for poultry Chapter 15 "choline" Animal Health and Nutrition 1989: La Roche-Inc.
14. Zhang, S., H. Zhao, and R. John, Development of a quantitative relationship between inhibition percentage and both incubation time and inhibitor concentration for inhibition biosensors-theoretical and practical considerations. Biosensors and Bioelectronics, 2001. 16(9-12): p. 1119-1126.
15. Cremisini, C., et al., Evaluation of the use of free and immobilized acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor. Analytica Chimica Acta, 1995. 311(3): p. 273-280.
16. McDonald, P., J. Greenhalgh, and C. Morgan, Animal nutrition. 2002: Addison-Wesley Longman Ltd.
17. Workel, H., et al., Choline-The rediscovered vitamin. Poultry International, 1999. 38: p. 44-47.
18. Kidd, M., P. Ferket, and J. Garlich, Nutritional and osmoregulatory functions of betaine. World's Poultry Science Journal, 1997. 53(2): p. 125-140.
19. Griffiths, D. and G. Hall, Biosensors-what real progress is being made? Trends in biotechnology, 1993. 11(4): p. 122-130.
20. Turner, A.P.F., I. Karube, and G.S. Wilson, Biosensors: fundamentals and applications. 1987: Oxford University Press, USA.
21. Clark, L.C., The enzyme electrode. Biosensors: Fundamentals and Applications, 1987. 1: p. 3-12.
22. Turner, M.F.C.a.A.P.F., The realization of electron transfer from biological molecules to electrodes Biosensors: Fundamentals and Applications, 1987. 15: p. 257-275.
23. Bartlett, P.N., The use of electrochemical in the study of modified electrodes Biosensors: Fundamentals and Applications, 1987. 13 p. 211-246.
24. Bartlett, P.N. and R.G. Whitaker, Strategies for the development of amperometric enzyme electrodes. Biosensors, 1988. 3(6): p. 359-379.
25. Bard, A.J. and L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons. Inc., New York, 2001.
26. Van Benschoten, J.J., et al., Cyclic voltammetry experiment. Journal of Chemical Education, 1983. 60(9): p. 772.
27. Cranston, W.J.A.a.D.H., Amperometric enzyme electrodes. Biosensors: Fundamentals and Applications, 1987. 12: p. 180-210.
28. Ye, L., et al., High current density "wired" quinoprotein glucose dehydrogenase electrode. Analytical Chemistry, 1993. 65(3): p. 238-241.
29. Georgakilas, V., et al., Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc, 2002. 124(48): p. 14318-9.
30. Heinze, T