Contents & References of Numerical investigation of non-linear differential equations, non-linear Schr?dinger equation, Corteweg DeVry equation
List:
Chapter One
1-1 Linear and nonlinear differential equations. 3
1-2 differences between linear and non-linear equations. 3
1-3 nonlinear Schr?dinger equation. 5
1-4 Corteweg de Vary equation. 12
Chapter Two
2-1 History. 31
2-2 Non-linear environment and scattering in waves. 39
2-3 light, dark and gray solitons. 41
2-4 stability of soliton 46
2-5 collision of solitons 48
2-6 application of solitons 50
Chapter 3
3-1 introduction 70
3-2 methods of solving nonlinear equations 70
3-3 laws of survival. 75
3-4-1 Edomian analysis method. 76
3-4-2 Solving the nonlinear Schr?dinger equation by the Adamian decomposition method. 77
3-4-3 Solving the Corteweg-Diury equation by Adamian decomposition method 80
3-5-1 Homotopy disorder method. 81
3-5-2 Solving the nonlinear Schr?dinger equation using the homotopy perturbation method. 83
3-5-3 Solving the Corteweg-DeVry equation using the homotopy perturbation method. 84
3-6-1 Method of repeating changes. 85
3-6-2 Solving the nonlinear Schr?dinger equation by repeating variations. 87
3-6-3 Solving the Cortex-Vag-DeVry equation by repeating changes. 87
Chapter Four
4-1 Summary and presentation of results. 92
4-2 suggestions. 93
Appendices
Appendix A (solving the equation by ADM method). 95
Appendix B (Solving the equation by HPM method). 103
Appendix C (solving the equation by VIM method). 111
Appendix d (solving the equation by ADM method). 119
Continued (solving the equation by HPM method). 127
Appendix and (solving the equation by VIM method). 135
Sources
Source:
Kargari Amena, Rouhani Mohammad Reza and Hakimi Pajouh Hossein, "Investigating the Sustainability of Ion-Acoustic Waves Using Plasma Particular Simulation", Iranian Research Magazine, Volume 11, Volume 11 90.
W. E. Boyce and R. C. DiPrima, 1997, "Elementary Differential Equations and Boundary Value Problems, Sixth Edition", John Wiley & Sons, 792 p.
F. C. Franci, 1984, "Introduction to Plasma and Controlled Fusion", Volume 1: Plasma Physics, Second edition, Springer, 421 p.
M. J. Ablowitz and P. A. Clarkson, 2003, “Solitons, Nonlinear Evolution Equations and Inverse Scattering”, London Mathematical Society Note Series, 149 p.
S. Karigiannis, 1988, "The Inverse Scattering Transform and Integrability of Nonlinear Evolution equations", Minor Thesis, 31 p.
T. Cattaert, I. Kourakis and P. K. Shukla, 2004, "Envelope solitons associated with electromagnetic waves in a magnetized pair plasma", Physics of Plasma" 12, 012319 (2005), 6 p.
D. J. Korteweg, G. de Vries, 1895, "On the Change of Form of Long Waves advancing in a Rectangular Canal and on a New Type of Long Stationary Waves", Philosophical Magazine, 5th series 39, 422 p.
P. G. Drazin and R. S. Johnson, 1989, "Solitons: an introduction", Cambridge University Press, 2nd ed, 226 p.
G. B. Whitham, 1976, "Linear and Nonlinear Waves", John Wiley & Sons, pp. 580-583.
Sodeh Mirzaei, "Two-dimensional solitons in nonlinear networks", master's thesis, February 2015, Arak University.
David Stevenson, "What interesting physics do tsunamis and earthquakes have?", Physics magazine, year 23, numbers 1 and 2, spring and summer 2014, pp. 23-26.
M. Remoisson, 1999, "Waves called Solitons; concepts and experiments", Springer, ISBN 978-3-540-65919-8, 335 p.
A. Afroozeha,b, L S. Amid, M. Kouhnavard, M. A. Jalila, 1. Alia, and P.P. Yupapinc, 2010, "Optical Dark and Bright Soliton Generation and Amplification", International Conference on Enabling Science and Nanotechnology (ESciNano), 3 p.
Li. F. Mollenauer and J. P. Gordon, 2006, "Solitons in optical fibers", Elsevier Academic Press, 296 p.
R. Rajaraman, 1982, “Solitons and instantons”, North-Holland, ISBN 0-444-86229-3, 409 p.
Yu. S. Kivshar, G. P. Agrawal, 2003, “Optical Solitons: From Fibers to Photonic Crystals”, Elsevier Academic Press, 540 p.
J. S. Russell, 1844,Russell, 1844, "Report on Waves", Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311-390.
M. J. Boussinesq, 1871, "Theorie de l'intumescence liquid appellee onde solitaire ou de translation, se propageant dans un canal rectangulaire." Comptes Rendus Acad. Sci., 72 pp. 755-759.
J. W. S. Lord Rayleigh, 1876, "On Waves," Phil. Mag., 1, pp. 257-279.
D. J. Korteweg, G. de Vries, 1895, "On the Change of Form of Long Waves advancing in a Rectangular Canal and on a New Type of Long Stationary Waves", Philosophical Magazine, 5th series 39, 422 p.
S. A. Herod, 2004, "Learning about Differential Equations from Their Symmetries", The Mathematica Journal, Vol. 9, I. 2, 15 p.
F. Chand and A. K. Malik, 2012, "Exact Traveling Wave Solutions of Some Nonlinear Equations Using - expansion method methods", ISSN 1749-3889 (print), 1749-3897(online) International Jounal of Nonlinear Science Vol. 14, NO. 4, pp. 416-424
Y. Gurefe, Y. Pandir and E. Misirli, 2012, "New Exact Solutions of Stochastic KdV Equation", Applied Mathematical Sciences, Vol. 6, no. 65, pp. 3225-3234.
A. H. Salas, 2011, "Exact Solutions for Ito Equation by the sn-ns Method", Applied Mathematical, Vol. 5, no. 46, pp. 2283-2287.
Latfi Taher, Mohammadi Yaqoubi Faraj Elah, Bablian Ismail, "Solving Nonlinear Equations Using Chaos Technique and Lagrange Expansion", Journal of Applied Mathematics, Lahijan Unit, 6th Year, Number 23, Winter 88, pp. 11-17.
D. Bai and L. Zhang, 2009, "The finite element method for the coupled Schrodinger-KdV equations", Physics Letters A 373, pp. 2237-2244.
M. A. Mohamed and M. Sh. Torky, 2013, "Numerical solution of nonlinear system of partial differential equations by the Laplace decomposition method and the Pade approximation", American Journal of computational Mathematics, 3, pp. 175-184.
Y. Dereli, D. Irk and I. Dag, 2009, "Soliton solutions for NLS equation using radial basis functions", Chaos, Solitons and Fractals 42, pp. 1227-1233.
T. Taha and M. Ablowitz, 1984, "Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations II: Numerical Nonlinear Schr?odinger Equation", J. Comput. Phys., Vol. 55, 2, pp. 203-230.
Y. Dereli, D. Irk, and ?I. Da?g, 2009, "Soliton solutions for NLS equation using radial basis functions", Chaos, Solitons and Fractals 42, pp. 1227–1233.
J. W. S. Lord Rayleigh, 1876, "On Waves," Phil. Mag., 1, pp. 257-279.
H. N. A. Ismail, K. R. Raslan, and G. S E. Salem, 2004, "Solitary wave solutions for the general KdV equation by Adomian decomposition method", Applied Mathematics and Computation, 154. pp. 17-29.
D. Kaya and S. M. E. Sayed, 2003, "On the solution of the coupled Schrodinger-KdV equation by the decomposition method", Physics Letters A 313, pp. 82-88.
M. S. E. Azab and I. L. E. Kalla, 2012, "Convergence of Adomian method for solving KdV-Burger equation", International Journal of Engineering Science and Technology, Vol. 4, No.05, 6 p. J. Biazar, E. Babolian and R. Islam, 2004, "Solution of the system of ordinary differential equations by Adomian decomposition method", Applied Mathematics and Computation 147, pp. 713-719.
B. S. H. Kashkari, 2012, "Adomian decomposition method for solving a Generalized Korteweg – De Vries equation with boundary conditions, Journal of King Abdul Aziz, 15p.
A. Bratsos, M. Ehrhardt and I. Th. Famelis, 2008, "A discrete Adomian decomposition method for discrete nonlinear Schrodinger equations", Applied Mathematics and computation, vol. 197, Issue. 1, pp. 190-205.
T. A. Abassy, ??M. A. E. Tawil and H. K. Saleh, 2004, "The solution KdV and mKdV equations using Adomian Pade Approximation", Freund Publishing House Ltd. International Journal of Nonlinear Sciences and Numerical Simulation 5(4), pp. 327-339.
D. Baleanu, A. R K. Golmankhaneh and A. K.