Contents & References of Quantum calculations of the interaction of cobalt, mercury, lead and aluminum ions with carbon nanotubes and boron nitride
List:
Abstract. 1
Chapter One: Introductions and Basic Definitions
1-1 Introduction. 3
1-2 quantum computing. 7
1-2-1 types of quantum calculations. 7
1-2-2 Application of quantum computing. 8
1-3 cobalt ions and their properties 11
1-3-1 application of cobalt. 14
1-4 mercury ions and their properties. 15
1-4-1 Application of mercury. 17
1-5 lead ion and its properties. 18
1-5-1 Application of lead. 22
1-6 aluminum ion and its properties. 28
1-6-1 Application of aluminum. 30
1-7 Carbon nanotubes and their characteristics 31
1-7-1 Application of carbon nanotubes. 32
1-8 boron nitride nanotubes. 33
1-8-1 Application of boron nitride nanotubes and their characteristics 34
Chapter Two: Overview of necessary information
2-1 Introduction. 36
2-2 quantum dots. 38
2-3 Calculation of the radius of nanotubes 43
2-4 ionic bond. 45
Chapter 3: Method of doing work
3-1 Methods of doing work 52
3-2 Connection energy. 59
3-3 Dipole moment. 61
3-4 Basic property calculations. 62
3-4-1 Review of ionization energy values. 63
3-4-2 Examining the electron demand values. 64
3-4-3 Checking the chemical potential values. 64
3-4-4 Checking the hardness and softness values. 64
3-5 (gap between HOMO and LUMO. 64
sources and origin. 90
source:
Analysis of functional graded structures, Homai Publishing Ghadir, 1390, Ali Gurbanpour Arani, Saeed Amir, Alireza Shajari, Mohammad Sharif Zarei
Batul Makibadi PhD thesis, Zahedan University, Department of Chemistry, 1388, pages 120-122.
Cheng and Zumdahl General Chemistry
General Chemistry Silberberg
Fundamentals of instrumental analytical chemistry Author: Skoog, West, Haller-Translation: Vida Tusli-Hosheng Khalili and Ali Masoumi
An introduction to Bernano Mechanics, Academic Book Publishing, 1386, Ramin Rahman Ghorbani Ahranjani, Alipour Arani, Hossein Soltani
Nano Carbon tubes and their manufacturing methods - Author: Seyed Amir Masoud Miri - Publisher: Imam Hossein University (AS)
A.M.Moralesi-Cas, C.Moya, B.Coto, L.F.Vega, G.Calleja, J.Phys Chem C111, (2007) 6473.
A.Thess, P.Nikolaev, Crystalline ropes of metallic carbon nanotubes, Science5274, (1996) 483-487.
D Tasis, N. Tagmatarchis,.A Bianco, M.Prato, Chemistry of carbon nanotubes Chem Rev 106, (2006) 1105-1136.
D. Qian, W.K. Liu, R.S. Ruoff, J. Phys. Chem. B, 105, 10753-10758; 2001.
D.Vardanega, F.Picaud, C.Girarder, Chiral response of single walled carbon nanotube based sensors to adsorption of amino acids, a theoretical model, J.Chem Phys127, (2007) 194702– 194712
Derfus A. M, Chan W. C. W, Bhatia S. N, Nano Lett, 4(2004), 11-8.
DS.Bethune, CH.Klang, MS.devries, G.Gorman, R.Savoy, J.Vazquez, R.Beyers, Cobalt-catalysed growth of carbon nanotubes withBeyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls Nature 363,607-605 (1993)
GB.Abadir, K.Walus, DL.Pulfrey Bias-dependent aminoacid-induced conductance changes in short semi-metallic carbon nanotubes, Nanotechnology 21, (2010) 5202–5208
Gill R, Zayats M, and Willner I, Angew. Chem. Int. Ed, 47, (2008), 7602-7625.
Ijiima, S., Barbec, C., Maiti, A., Bernholc, J., Structural flexibility of carbon nanotubes, J.Chem. Phys., 104, 2089-2092, 1996.
Ijiima, S., Helical microtubes of grghitic carbon, Nature, 354, 56-58, 1991.
J.Beyersr, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature (London)363,(1993) 605–607.
Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian A. M. Biomaterials, 28(2007), 4717-4732.
Jwa, M. N., Savka. I. S. and Chad A. M (2004) Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity J. Am. Chem. Soc
Jwa, M. N., Shad, C. and Chad, C. M. (2003) Nanoparticle-Based Bio-barcodes for the Ultrasensitive Detection of proteins Science
Kiang, C.H., Endo, M., Ajayan, P.M., Dreelhaus, G., Dresslhaus, M.S., Size effect in carbon. nanotubes, Phys.Rev. Lett., 81, 1869-1872, 1998.
M. Damnjanovic, I. Milosevic, T. Vukovic, R. Sredanovic, Full symmetry, and potentials of single-wall and multi-wall nanotubes, Phys. Rev. B, 889-60; 1999.
M. S. Dresselhaus, G. Dresselhous, P. C. Eklund, esselhaus, and P.C. Eklund, Science of fullerenes and carbon nanotubes, San Diego; Academic Press, 965; 1996.
Medintz I. L., Uyeda H. T., Goldman E. R., Mattoussi H., Nat Mater, 4(2005), 435-46.
MF.Mora, CE.Giacomelli, CD.Garcia, Interaction of Lamino acid oxidase with carbon nanotubes, implications in the design of biosensors, Anal Chem 81, (2009) 1016–1022.
Park,S. J. and Chad, C. M. (2002) Array-Based Electrical Detection of DNA with Nanoparticle probes Science
Pedro,T. , Maria, D. and Morale, P. (2003) The preparation of magnetic nanoparticles for application in biomedicine J. Phys. Appl. Phys
S.Iijima,.TIchihashi, Single-shell carbon nanotubes of 1-nm diameter Nature (London) 363, (1993) 603–605.
Tracy, M.M.J., Ebbesen, T.W., Gibson, j.m., Exceotionally high young modulus observed for individual carbon nanotubes, Nature, 381, 678-680, 1996.
Wu X, L. H., and Liu, J. (2003) Immunofluorescent labeling of cancer marker Her and other cellular targets with semiconductor quantum dots Nat. Biotechnol.
Xiaoho,G. and Shuming, N. (2005) Luminescent Quantum Dots for biological labeling In: Nanobiotechnology: Concepts, Application and perspectives. (Niemeyer, C. M. and Mirkin, C. A.), WILEY-VCH. p
Xiaohu, G. , Yang, L. , John A P. and Marshall, F. (2005) In vivo molecular and cellular imaging with quantum dots Current |Opinion in Biotechnology
Yu, M. F., Yakobson, B.I. Ruff, R.S., Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes, G. Phys. Chem. B, 104, 8764-8767, 2000.