Contents & References of Detection of lung cancer using nano biosensor based on nanohybrid graphene oxide - DNA
List:
Chapter One: Introduction and review of sources. 1-1- Lung cancer. 2
1-1-1- risk factors 3
1-1-2- genetic changes causing lung cancer. 4
1-2- The importance of identifying lung cancer. 5
1-3- Lung cancer detection methods. 6
1-3-1- silica nanowires 7
1-3-2- gold nanoparticles. 10
1-3-3- carbon nanotubes. 13
1-3-4- Quantum dots. 17
1-4-graphene. 21
1-5-graphene oxide. 24
1-6-Uses of graphene oxide. 27
1-6-1-use of graphene oxide in bioelectrochemistry. 28
1-6-2- Medical and biological applications of graphene oxide. 29
1-7- The purpose of the present scientific work. 38
The second chapter: Experimental part. 39
2-1- Materials and devices 40
2-2- Preparation of Tris-HCl buffer 42
2-3- Graphene oxide synthesis. 42
2-4 Preparation of solutions to measure the fluorescence spectrum. 43
2-4-1- Preparing the first step solution. 43
2-4-2- Preparation of second stage solution. 43
2-4-3- Preparation of third stage solutions. 44
2-4-4- Preparing the solution of the fourth step. 44
2-4-5- Preparation of solutions of the fifth stage. 44
2-4-6- preparing the solutions of the sixth step. 45
The third chapter: results and discussion. 46
3-1- Preparation of graphene oxide from graphite. 47
3-2- Examining the UV-Vis spectrum of graphene oxide. 48
3-3- Interpreting the IR spectrum of graphene oxide. 49
3-4- Examining the TEM image of graphene oxide. 49
3-5- Lung cancer biomarker selection. 50
3-6- Interpretation of emission spectra. 53
3-6-1- Examining the DNA probe fluorescence spectrum. 53
3-6-2- Optimization of DNA probe absorption time on GO surface. 54
3-6-3- Optimizing the amount of GO in the presence of DNA probe. 56
3-6-4- Examining the fluorescence spectrum of DNA-GO probe complex in the presence of target DNA (healthy DNA) 57
3-6-5- Optimizing the hybridization time of target DNA with probe DNA in the presence of GO. 58
3-6-6- Examining the fluorescence intensity changes of DNA-GO probe complex in the presence of different concentrations of target DNA 60
3-6-7- Examining the fluorescence spectrum of DNA-GO probe in the presence of mDNA (mutant DNA) 62
3-7- Identifying lung cancer. 63
3-8- Conclusion. 65
3-9- Suggestions. 66
Resources 67
Source:
[1] A. J. Alberg, M. V. Brock, J. M. Samet. Epidemiology of lung cancer: looking to the future. J. Clin. Oncol., 2005, 23, 3175-3185.
[2] S. Y. Luo, D. C. Lam. Oncogenic driver mutations in lung cancer. Translation. Respir. Med., 2013, 1, 6-13.
[3] F. Taher, N. Werghi, H. Al-Ahmad, C. Donner. Extraction and Segmentation of Sputum Cells for Lung Cancer Early Diagnosis. J. Algorithms, 2013, 6, 512-531.
[4] G. S. Wright, M. E. Gruidl. Early detection and prevention of lung cancer. Curr. Opin. Oncol., 2000, 12, 143-148.
[5] T. Ozlu, Y. Bubul. Smoking and lung cancer. Tüberküloz ve Toraks Dergisi, 2005, 53, 200-209.
[6] T. K. Sethi, M. N. El-Ghamry, G. H. Kloecker. Radon and lung cancer. Clin. Adv. Hematol. Oncol., 2012, 10, 157-164.
[7] R. Hubaux, D. D. Becker-Santos, K. S. Enfield, S. Lam, W. L. Lam, V. D. Martinez. Arsenic, asbestos and radon: emerging players in lung tumorigenesis. J. Environ. Health, 2012, 11, 89-100.
[8] J. D. Minna, J. A. Roth, A. F. Gazdar. Focus on lung cancer. Cancer cell, 2002, 1, 49-52.
[9] G. Ellison, G. Zhu, A. Moulis, S. Dearden, G. Speake, R. M. Cormack. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumor tissue and cytology samples. J. Clin. Pathol., 2013, 66, 79-89.
[10] C. E. Kim, K. M. Tchou-Wong, W. N. Rom. Sputum-Based Molecular Biomarkers for the Early Detection of Lung Cancer: Limitations and Promise. Cancers, 2011, 3, 2975-2989.
[11] F. R. Hirsch, W. A. ??Franklin, A. F. Gazdar, P. A. Bunn. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin. Cancer Res., 2001, 7, 5-22.
[12] D. Hayes, H. Secrist, C. Bangur, T. Wang, X. Zhang, D. Harlan, G. Goodman, R. Houghton, D. Persing, B. Zehentner.Multigene real-time PCR detection of circulating tumor cells in peripheral blood of lung cancer patients. Anticancer Res., 2006, 26, 1567-1576.
[13] A. Arroliga, R. Matthay. The role of bronchoscopy in lung cancer. Clin. Chest Med., 1993, 14, 87-98.
[14] Y.E. Choi, J.W. Kwak, J. W. Park. Nanotechnology for early cancer detection. Sensors, 2010, 10, 428-455.
[15] S. Nie, Y. Xing, G. J. Kim, J. W. Simons. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9, 257-288.
[16] Z. L. Wang, R. P. Gao, Z. W. Pan, Z. R. Dai. Nano-scale mechanics of nanotubes, nanowires, and nanobelts. Adv. Eng. Mater., 2001, 3, 657-661.
[17] P. K. Sekhar, N. S. Ramgir, R. K. Joshi, S. Bhansali. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10. Nanotechnology, 2008, 19, 5502-5508.
[18] N. S. Ramgir, A. Zajac, P. K. Sekhar, L. Lee, T. A. Zhukov, S. Bhansali. Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica nanowires. J. Phys. Chem. C, 2007, 111, 13981-13987.
[19] G. Peng, M. Hakim, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, U. Tisch, H. Haick. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Brit. J. Cancer, 2010, 103, 542-551.
[20] G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. nanotechnol., 2009, 4, 669-673.
[21] http://what-when-how.com/nanoscience-and-nanotechnology/functionalization-of nanotube-surfaces-part-1-nanotechnology/
[22] L. Zhang, D. Lv, W. Su, Y. Liu, Y. Chen, R. Xiang. Detection of cancer biomarker with nanotechnology. Am. J. Biochem. Biotechnol., 2013, 9, 71-89.
[23] S. r. Ji, C. Liu, B. Zhang, F. Yang, J. Xu, J. Long, C. Jin, D. l. Fu, Q. x. Ni, X. j. Yu. Carbon nanotubes in cancer diagnosis and therapy. BBA-Rev. Cancer, 2010, 1806, 29-35.
[24] N. Sinha, J. T. Yeow. Carbon nanotubes for biomedical applications. IEEE T. NanoBiosci., 2005, 4, 180-195.
[25] R. M. Reilly. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J. Nucl. Med., 2007, 48, 1039-1042.
[26] W. Yang, P. Thordarson, J. J. Gooding, S. P. Ringer, F. Braet. Carbon nanotubes for biological and biomedical applications. Nanotechnology, 2007, 18, 412-420.
[27] F. Liu, P. Xiao, H. Fang, H. Dai, L. Qiao, Y. Zhang. Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Physica E, 2011, 44, 367-372.
[28] J. Drbohlavova, V. Adam, R. Kizek, J. Hubalek. Quantum dots—characterization, preparation and usage in biological systems. Int. J. mol. sci., 2009, 10, 656-673.
[29] H. Zhang, D. Yee, C. Wang. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine-UK, 2008, 3, 83-91.
[30] M. Hu, J. Yan, Y. He, H. Lu, L. Weng, S. Song, C. Fan, L. Wang. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano, 2009, 4, 488-494.
[31] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi. Quantum dot bioconjugates for imaging, labeling and sensing. Nat. mater., 2005, 4, 435-446.
[32] G. Jie, L. Wang, S. Zhang. Magnetic electrochemiluminescent Fe3O4/CdSe–CdS nanoparticle/polyelectrolyte nanocomposite for highly efficient immunosensing of a cancer biomarker. Chem. Eur. J., 2011, 17, 641-648.
[33] M. Pumera, A. Ambrosi, A. Bonanni, E. K. Chng, H. L. Poh. Graphene for electrochemical sensing and biosensing. TrAC-Trend Anal. Chem., 2010, 29, 954-965.
[34] W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang.