Contents & References of Reaction of arylglyoxals with different diamines under microwave conditions
List:
Chapter One: Introduction
1-1. Pyrazines 2
1-2. Structure of pyrazines 2
1-3. Synthesis of pyrazines 4
1-3-1. The use of 1,2-diamine compounds with 1,2-dicarbonyl compounds 4
1-3-2. The use of -aminocarbonyl compound. 5
1-3-3. The use of - amino hydroxyls 5
1-3-4. Use of oximes 6
1-3-5. Use of ethylene diamine. 6
1-3-6. Use of ?-halotones in the presence of microwaves. 6
1-3-7. Intramolecular reaction 6
1-4. Synthesis of pyrido]3 and 4-[b-pyrazine. 7
1-4-1. Reaction of 3,4-diaminopyridine with 1,2-dicarbonyl compounds 7
1-4-2. Reaction of 5-bromo-3,4-diaminopyridine with 2-(methylthio)-1-phenylethanone. 7
1-5. Reactions of pyrazines 8
1-6. Quinoxalines 10
1-7. Synthesis methods of quinoxalines 10
1-7-1. Condensation of aromatic diamines with dicarbonyl compounds 10
1-7-2. Intramolecular cyclization. 11
1-7-3. Loop Decomposition. 12
1-7-4. Synthesis of fused quinoxalines. 12
1-7-5. Use of quinoxaline-alfactol or dione. 15
1-7-6. Using free glyoxal as synten. 17
1-7-7. Use of diketone or related synthene. 17
1-7-8. Using diketones to produce a product. 18
1-7-9. Using diketone to produce two isomeric products. 19
1-8. Reactions of quinoxalines 20
1-8-1. Substitution reactions. 20
1-8-2. Reduction: 20
1-8-3. Synthesis of pyrazoloquinoxalines from quinoxalines 21
1-9. Application of quinoxalines 22
1-9-1. Antibacterial activity. 22
1-9-2. Anticancer activities of quinoxalines 23
Chapter Two: Discussion and review
2-1. Preparation methods of arylglyoxales 25
2-2. General synthesis method of aryl pyrido]2 and 3-[b pyrazine derivatives 27
2-2-1. Synthesis of 3-phenylpyrido]2,3-[b-pyrazine. 28
2-2-2. Synthesis of 3-(4-nitrophenyl)pyrido]2,3-[b-pyrazine. 28
2-2-3. Synthesis of 3-(4-chlorophenyl)pyrido]2,3-[bpyrazine. 29
2-2-4. Synthesis of 3-(4-fluorophenyl)pyrido]2,3-[bpyrazine. 29
2-2-5. Synthesis of 3-(3-methoxyphenyl)pyrido]2,3-[bpyrazine. 30
2-2-6. Synthesis of 3-(4-methoxyphenyl)pyrido]2,3-[bpyrazine. 30
2-2-7. Synthesis of 3-(3,4-dimethoxyphenyl)pyrido]2,3-[bpyrazine. 31
2-2-8. Synthesis of 3-(1,1)-biphenyl[4-yl)-pyrido]2,3-[b-pyrazine. 32
2-3. Synthesis of 5-arylpyrazine-2,3-dicarbonitrile derivatives. 33
2-3-1. Synthesis of 5-phenylpyrazine-3,2-dicarbonitrile. 33
2-3-2. Synthesis of 5-(4-chlorophenyl)pyrazine-3,2-dicarbonitrile. 33
2-3-3. Synthesis of 5-(4-methoxyphenyl)pyrazine-3,2-dicarbonitrile. 34
2-3-4. Synthesis of 5-(]1,1-biphenyl[4-yl)-pyrazine-3,2-dicarbonitrile. 34
2-3-5. Synthesis of 3-(4-bromophenyl)pyrido]2,3-[bpyrazine. 35
2-4. Synthesis of 2-aryl quinoxalines 36
2-4-1. Synthesis of 2-phenylquinoxaline. 37
2-4-2. Synthesis of 2-(4-nitrophenyl)quinoxaline. 37
2-4-3. Synthesis of 2-(4-fluorophenyl)quinoxaline. 38
2-4-4. Synthesis of 2-(3-methoxyphenyl)quinoxaline. 38
2-4-5. Synthesis of 2-(]1,1-biphenyl[4-yl)-quinoxaline. 39
2-4-6. Synthesis of 2-methoxy-4-(quinoxalin-2-yl)phenol. 39
2-4-7. Synthesis of 2-(3,4-dimethoxyphenyl)quinoxaline. 40
2-5. Synthesis of 2-aryl 6-nitroquinoxalines 41
2-5-1. Synthesis of 2-(4-fluorophenyl)-6-nitroquinoxaline. 42
2-5-2. Synthesis of 2-(3,4-dimethoxyphenyl)-6-nitroquinoxaline. 42
2-5-3. Synthesis of 2-(4-bromophenyl)-6-nitroquinoxaline. 43
2-6. conclusion 44
The third chapter: Experimental part
3-1. Materials and devices 46
3-2. Synthesis method of derivatives. 47
3-2-1. General synthesis method of arylpyrido]2 and 3-[b]pyrazine derivatives 48
3-2-2. General method of synthesis of 5-arylpyrazine-3,2-dicarbonitrile derivatives. 55
3-2-3. General synthesis method of 2-aryl quinoxalines 59
3-2-4. The general method for the synthesis of 2-aryl 6-nitroquinoxalines 67
The fourth chapter of the spectrum appendix. 72
Resources and sources. 89
Source:
[1] Boyd, R. K., Comper, J., Ferguson, G. Can. J. Chem., 1979, 57, 3056. [2] Claus, E., Seipelt,, Günther, E., Polymeropoulos, E., Czech, M., Schuster, T. PCT Int. Appl. WO 2007/054556, 2007; Chem. Abstr. 2007, 146, 521825.
[3] White, L. E., Reynolds, R. C., Suling, W. PCT Int. Appl. WO 2004/005472, 2004;
Chem. Abstr., 2004, 140, 105238.
[4] Barbier, P., Peyrot, V., Sarrazin, M., Rener, G. A., Briand, C. Biochemistry., 1995, 34, 16821.
[5] The Chemistry of Heterocycles, Second Edition. By Theophil Eicher and Siegfried Hauptmann
Wiley-VCH New York, 2003.
[6] Kano, S., Takahagi, Y., Shibuya, S. Synthesis., 1978, 372.
[7] Meksh, P. A., Anderson, A. A., Shimanska, M. V. Khim. Geterotsikl. Soedin., 1994,950.
[8] S. Ahmad, A. Maleki, Chem. Pharm. Bull., (2008), 56(1), 79-81.
[9] Anteunis, M. J. O., Hosten, N. G. C., Borremans, F. A. M., Tavernier, D. K. Bull. Soc.Chim .Belg., 1983, 92, 999.
[10] Anteunis, M. J. O., Hosten, N. G. C., Borremans, F. A. M., Tavernier, D. K. Bull. Soc.
Chim .Belg., 1983, 92, 999.
[11] Koch, P., Jahns, H., Schattel, V., Goettert, M., Laufer, S. J. Med. Chem., 2010, 53,1128.
[12] Antoine, M., Gerlach, M., Günther, E., Schuster, T., Czech, M., Seipelt, I., Marchand, P.
Synthesis., 2012, 44, 69.
[13] Lont. P. J, van der Plas. H. C, Verbeek. A. J, Rec. Trav. Chim. Pays-Bas, 1972, 91, 949.
[14] E. Marchlewsk., Berichte., 1895, 28,2528.
[15] V.A. Singh, R.S. Varma, S.D. Dwivedi, H.N. Verma., Indian Drugs., 1985, 22, 582.
[16] J.O.E. Bergman, S.G. Aokerfeldt., PCT Int. Appl. WO., 1987, 436, 8704.
[17] K.D. Banerji, A.K.D. Mazumdar, K. Kumar, S.K.J. Guha., Indian Chem. Soc., 1979, 56, 396.
[18] T.S. Hafez., Phosph. Sulf. Silicon., 1991, 61, 341.
[19] J.S. Anderson, T.M. Schultz., Eur. Pat. Appl., EP 359, 1990, 465.
[20] K. Niume, F. Toda, K. Uno, M. Hasegawa, Y. J. Iwakura., Polymer Sci. Polymer Chem., 1983, 21,615.
[21] K. Niume, S. Kurosawa, F. Toda, M. Hasegawa, Y. Iwakura., Bull. Chem. Soc. Jpn., 1982, 55, 2293.
[22] Ricoh., Co Ltd. Jpn. Kokai Tokkyo Koho.,JP 5,1984,918,696.
[23] C. Rivalle, E. J. Bisogni., Heterocyclic Chem., 1997, 34, 441.
[24] G. Kollenz, R. Theuer, K. Peters, E. M. Peters., J. Heterocyclic Chem. Chem., 2001, 38, 1055. [25] A.G. Drushlyak, A.V. Ivashchenko, V. V. Titov., Khim. Geterotsikl. Soedin. , 1984, 1544.
[26] M.H. Alamdari. M. Helliwell. M.M. Baradarani. J. A. Joule., Arkivoc., 2008 (xiv) 166
[27] M.H. Alamdari. M. Helliwell. M.M. Baradarani. J. A. Joule., Arkivoc.,2008 (xiv) S1, S8
[28] M. Shamsi, M. M. Baradarani, A. Afghan, J. A. Joule., Arkivoc., 2011 (ix). 252.
[29] D.C.W. Blaikley, D.W. Currie, D. M. Smith, S. A. Watson, and H. McNab, J. Chem. Soc., Perkin Trans. 1, 1984, 367.
[30] S. Grivas and K. Olsson, Acta Chem. Scand., Ser. B, 1985, 39, 31.
[31] T. Yamamoto, K. Sugiyama, T. Kushida, T. Inoue, and T. Kanbara, J. Am. Chem. Soc., 1996, 118, 3930
[32] F. Vogtle, M. Palmer, E. Fritz, U. Lehmann, K. Meurer, A. Mannschreck, F. Kastner, H. Irngartinger, U. Huber-Patz, H. Puff, E. Friedrichs, Chem. Ber., 1983, 116, 3112.
[33] M. M. Loriga, A. Nuvole, G. Paglietti, J. Chem. Res., 1989, 202.
[34] M. M. Roland and R. C. Anderson., J. Heterocycl. Chem., 1977, 14, 541.
[35] R. H. Baudy, L. P. Greenblatt, I. L. Jirkovsky, M. Conklin, R. J. Russo, D. R. Bramlett, T. A. Emrey, J. T. Simmonds, D. M. Kowal, R. P. Stein, R. P. Tasse., J. Med. Chem., 1993, 36, 331.
[36] J. Pohmer, M. V. Lakshmikanthan, M. P. Cava., J. Org. Chem., 1995, 60, 8283.
[37] K. Y. Abid, W. R. McWhinnie, J. Organomet. Chem., 1987, 330, 337.
[38] J. Renault, M. Baron, P. Kailliet, S. Giorgi-Renault, C. Paoletti, S. Cros., Eur. J. Med. Chem., 1981, 16, 545.
[39] HMcNab, J. Chem. Soc., Perkin Trans.