Contents & References of Experimental and theoretical study of industrial wastewaters containing some heavy metal ions by nano and nano-activated structures
List:
Chapter One: An overview of research background
1-1- Introduction. 2
1-2- The concept of nano. 2
1-3- What is nanotechnology?. 3
1-4- Why nanotechnology?. 4
1-5- The importance of nanotechnology. 4
1-6- The difference between nano technology and other technologies. 5
1-7- Classification of nanotechnology. 5
1-7-1-Wet nanotechnology 5
1-7-2-Dry Nanotechnology 5
1-7-3- Nano computational 6
1-8- Classification of materials in nano technology. 6
1-8-1- nano layer. 6
1-8-2- nano coating. 6
1-8-3- nano cluster. 6
1-8-4- nano wire. 6
1-8-5- nanotube. 6
1-8-6- nano cavity 7
1-8-7- nanoparticles. 7
1-8-8-fullerene. 7
1-8-1- nano layer. 7
1-8-2- nano coating. 7
1-8-3- nano cluster. 7
1-8-4- nano wire. 7
1-8-5- Nano tube. 8
1-8-5-1- Nanotubes exist in two main categories. 9
1-8-5-2- Features of carbon nanotubes. 9
1-8-6- nano cavity 10
1-8-7- nano particle 10
1-8-7-1- properties of nanoparticles. 10
1-8-8- Fullerenes 11
1-8-8-1- Applications of fullerenes 12
1-8-1- Diagnostic tools in nano sciences. 13
1-9-1- Atomic Force Microscope (AFM) 13
1-9-2- Scanning Tunneling Microscope (STM) 13
1-9-3- Magnetic Force Microscope (MFM) 14
1-9-4- Transmission Electron Microscope (TEM) 14
1-9-5- Electron Microscope Scanning (SEM) 14
1-10- Graphene 14
1-11- Graphene applications. 18
1-12- The electronic structure of graphene. 18
1-13- Use of the environment. 19
1-14- Factors affecting water. 20
1-14-1- Chemical pollution. 21
1-14-2- Biological pollution. 21
1-15- Minerals in water and their effects 21
1-15-1- Cadmium. 21
1-15-2- Lead. 22
1-16- Generalities of atomic absorption (AAS) 22
1-17- Advantages of atomic absorption (AAS) 23
1-18- Computational chemistry. 24
1-19- Review of theoretical methods in quantum mechanics. 25
1-20- Born-Oppenheimer approximation. 26
1-21- Methods of solving the electronic Schr?dinger equation. 27
1-22- Optimizing the equilibrium geometry of the molecule. 27
1-23- Single electron wave function and Hartree-Fock method. 27
1-24- Molecular mechanics method. 29
1-25- Quantum mechanics method. 30
1-25-1- semi-empirical method. 30
1-25-2- Initial methods. 31
1-25-2-1- Müller-Plast disorder theory............................ 31
1-25-2-2- Self-consistent field method (SCF) Hartree-Fock. 32
1-25-2-3- Compositional interaction (CI) 33
1-25-2-4- Electron correlation. 33
1-25-2-5- Density subordination theory (DFT) 33
1-25-2-6- DFT ability 35
1-25- Basis set. 35
1-26- Slater orbitals (STO) 36
1-27- Gaussian basis sets (GTO) 37
1-28- Division of types of basis sets. 37
1-29- Classification of simple functions 38
1-29-1- Minimal basic sets. 38
1-29-2- Basic set with split valance layer. 38
1-29-3-polarized basis sets 39
1-29-4-spreading functions. 39
1-29-5- Set of advanced functions. 39
1-30- Single point calculations 40
1-31- Some features of Gaussin software. 41
Chapter Two: Experimental part, materials and research methods
2-1- Research method and materials. 43
2-1-1- Chemicals. 43
2-1-2- Laboratory equipment. 43
2-1-3- device 44
2-2- synthesis of graphene oxide (GO) 44
2-3- preparation of 6-amino uracil. 45
2-4- Preparation of ethylenediamine. 46
2-5- absorption tests. 47
2-5-1- In the presence of constant absorbent and different times and also in the presence of different absorbents at constant time 47
2-5-2- Absorption test in different concentrations. 48
2-5-3- Absorption test at different pH. 48
Chapter Three: Discussion and review of research data
3-1- The effect of the absorption rate of metal ion elements in the presence of 2 mg of adsorbent (nano) at different times 59
3-2- The effect of different amounts of adsorbent 0.5, 1, 2, 5. 61
3-3- Comparison of the amount61
3-3- Comparison of the effect of the absorption of ions of heavy metal elements in the presence of three adsorbents at different concentrations 62
3-4- Comparison of the effect of pH on the absorption of metal ions of copper, lead, cadmium in the presence of three adsorbents at specific concentrations of nano 62
3-5- Software used 69
3-6- Review and comparison of the stability of compounds for gas phase with Basic set g21-3. 70
3-7- Investigating and comparing the stability of compounds for the solvent phase with the base set g21-3. 71
3-8- Investigating and comparing the stability of compounds for the solvent phase with the base set (d,p)g31-6.72
3-9- Investigating and comparing the enthalpy energy for copper, cadmium, and lead metal ions. 73
3-10- Investigating and comparing the tendency to carry out surface adsorption reaction through the calculation of Gibbs free energy 76
Chapter four: Conclusions and suggestions
4-1- Conclusion of the experimental and theoretical works. 80
4-2- Things that can be done in the future. 81
Sources
Source:
1-map. and., The smallest details (technology of dwarfs). Iran newspaper 1385 p. 16
2- http://www.Physicsir.com
3- http://www.nano.ir/reports/attach/fy2004/site V3.pdf
4- http://www. Webopedia's definition of nanotechnology
5- Kralj. M., and Pavelic. K. Medicine on a Small Scale. Embo Reports. 2003;4:1008-1012.
6- Nanotechnology getting the ground in cancer research. Judith Randal - Journal of the National Cancer Institute. Vc193, NO.24
7- http://www.chemists.ir
8- http://www.Parf.com/showthread .php ?t=612
9- http://www.itanalyzer.ir
10- http://www.Webopedia’s term/n/nanotechnology.htm com/ .internet
11- http://www.Nanoclub.ir
12- http://www.forum.p30world.com/ showthread .php ?t=26933
13- Yildirim. T., Gulseren. O. Klc. C., Ciraci. S. Pressed interlinking of carbon nanotubes PHYSICAL REVIEW B. 2000; 62:15,19.
14- Hollister. P., Roman. C., T. Harper Fullerenes. Scientifica Ltd. 2003;6.
15- http://www.sussex.ac.uk/
16- Panina. L.K., Kurochkin. V.E., Bogomolova. E.V., Evstrapov. A.A., Spitsyna. N. G. Doklady Biological Science. 1997; 357-530.
17- Bogunia-Kubik. K., Sugisaka M. Biosystems. 2002; 65, 123.
18- http://www.nanoclub.ir/index.php/articles/show/197.
19- Kosynkin. D. V., Higginbotham. A. L., Sinitskii. A., Lomeda. J.R., Dimiev. A., Price. B. K., Tour.J. M. Longitudinal Unzipping of Carbon Nanotubes to form Graphene Nanoribbons. Nature. 2009; 458:872–876.
20- Geim. A. K. Graphene Status and Prospects. Science. 2009;324:1530–1534.
21- Katsnelson. M. Graphene Carbon in Two Dimensions. Materialstoday. 2007;10:20–27.
22- Rao. C. N. R. Biswas. K. Subrahmanyam. K S. Govindaraj. A. Graphene. the New Nanocarbon. Journal of Material Chemistry. 2009;19:2457–2469.
23- Geim. A.K. and Novoselov. K. S. The Rise of Graphene. Nature Materials. 2007;6:183–191.
24-Pumera. M., Ambrosi. A., Bonanni. A., Chng. E.L.K. Poh. H.L. Graphene for Electrochemical. Sensing and Biosensing.
25- Heyrovska. R. Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single. Double and Resonance Bond Radii of Carbon. 2008.
26- Geim. A. K. Kim. P., Carbon Wonderland. Scientific American. 2008; p:90-97.
27- Choi. W., Lahiri. I., Seelaboyina. R., Kang. Y. S. Synthesis of Graphene and its Applications: a Review. Critical Reviews in Solid State and Materials Sciences. 2010;35:52–71.
28- Novoselov. K.S., Geim. A.K., Morozov. S.V., Jiang. D., Katsnelson. M.I., Grigorieva. I. V., Dubonos. S. V., Firsov. A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature.2005;438:197–200.
29-Wikipedia®, Graphite Intercalation Compound http://en.wikipedia.org/wiki/Graphene intercalation compound
30- Choi. W., Lahiri. I., Seelaboyina. R., Kang. Y., S. Synthesis of Graphene and its Applications a Review. Critical Reviews in Solid State and Materials Sciences.