Contents & References of Modeling the distribution of bubbles in liquid gas floating bed system by computational fluid dynamics (CFD) method.
List:
Thank you. D
Table of Contents. e
list of figures i
list of tables. K
List of diagrams K
Symptoms and abbreviations. M..
Abstract 1
Chapter 1 General. 3
1.1. Introduction. 4
1.2. Analysis of fluid behavior. 5
1.3. The background of the emergence of CFD. 6
1.4. Comparison of methods of solving fluid mechanics equations. 6
1.5. Computational fluid dynamics. 7
1.5.1. CFD working steps in general. 8
1.5.2. Working steps of a CFD program at a glance 9
1.5.3. How does a CFD program work? 10
1.5.4. CFD software. 16
1.6. Phase currents. 16
1.6.1. Multiphasic diets. 17
1.6.2. Examples of multiphase systems. 19
1.6.3. Choosing a multiphase model. 20
1.6.4. Comparison of models 22
Chapter 2 Introduction. 25
2.1. Perspective 25
2.2. Motivation and purpose. 28
2.3. Scope and outline of the thesis. 29
Chapter 3 Research overview. 32
3.1. Gas-liquid two-phase flow patterns and regime map in horizontal and vertical pipes. 32
3.1.1. Flow patterns and regime map in vertical pipe flow. 32
3.1.2. Flow pattern and regime map in horizontal pipe flow. 35
3.2. Characteristics of isothermal bubble flow in the bubble column. 39
3.3. Population balance modeling for isothermal bubble flow 41
3.4. Bubble collision mechanisms. 47
Chapter 4 numerical formulation and population balance model. 50
4.1. Population balance model. 50
4.1.1. Population balance equation. 50
4.1.2. Bubble collision mechanisms. 51
4.1.3. Population balance model methods. 58
4.2. Interphase momentum transfer. 62
4.2.1. drag force 63
4.2.2. Force for 63
4.2.3. Wall sliding force 64
4.2.4. Virtual crime force. 65
4.2.5. turbulent dispersion force. 65
4.3. Turbulent modeling for two-fluid model. 66
4.4. Two-fluid model and closed sentence. 69
Chapter 5 Numerical investigation of the effect of interfacial forces on bubble flow. 71
5.1. Introduction. 71
5.2. Mathematical model. 74
5.2.1. Interfacial momentum transfer due to tension. 74
5.2.2. Average bubble density number model (ABND) 77
5.2.3. Cores of failure and continuity. 77
5.3. Numerical and experimental details. 79
5.4. Results and discussion. 81
5.4.1. Distribution of the empty fraction. 81
5.4.2. Average bubble diameter. 83
5.4.3. Time average gas velocity. 86
5.5. conclusion 88
Chapter 6 Modeling horizontal gas-liquid bubble flow using population balance method. 91
6.1. Introduction. 91
6.2. Numerical details. 93
6.3. Results and discussion. 96
6.3.1. Time-average void fraction of gas 96
6.3.2. Time-average interfacial area concentration (IAC) 98
6.3.3. Time-average gas velocity 99
6.4. Conclusion. 99
Chapter 7 Modeling of gas-liquid vertical bubble flow using direct quadrature of moments method (DQMOM)) 102
7.1. Introduction and mathematical formulation. 102
7.2. Mathematical models. 105
7.2.1. DQMOM models. 105
7.2.2. Spring sentences of DQMOM models. 107
7.3. Description of test setup. 108
7.3.1. Description of setup of MTLOOP and TOPFLOW experiments. 109
7.3.2. Growth of different bubble sizes created by different injection methods. 110
7.4. Numerical details. 111
7.5. discussion 112
7.5.1. Bubble void fraction distribution. 113
7.5.2. Bubble size distribution. 116
7.6. conclusion 118
Chapter 8 Conclusion. 120
8.1. Numerical investigation of the effect of interfacial force on bubble flow. 120
8.2. Modeling of gas-liquid horizontal flow using ABND based on population balance method. 121
8.3. Modeling of vertical gas-liquid bubbly flow using direct quadrature of moments (DQMOM) method 122
8.4. Recommendations for CFD Development and Future Research in Two-Phase Flow 122
Source:
ANSYS. CFX-14 User Manual. ANSYS-CFX, 2012
Bannari R., Kerdouss F., Selma B., Bannari A., Proulx P. (2008). "Three dimensional
mathematical modeling of dispersed two phase flow using class method"Three dimensional
mathematical modeling of dispersed two phase flow using class method of
population balance in bubble columns". Computational Chemical Engineering, 32,
3224.
Behzadi A., Issa R. I., Rusche H. (2004). "Modelling of dispersed bubble and droplet
flow at high phase fractions", Chemical Engineering Science, 59, 759.
Bertola F., Baldi G., Marchisio D., Vanni M. (2004). "Momentum transfer in a swarm
of bubbles: estimates from fluid-dynamic simulations", Chemical Engineering
Science, 59, 5209.
Bhole M. R., Joshi J. B., Ramkrishna D. (2008). "CFD simulation of bubble columns incorporating population balance modeling". Chemical Engineering Science, 63,
2267.
Boyera, C., Duquenneb, A., Wild, G., (2002) “Measuring techniques in gas–liquid and
gas–liquid–solid reactors”, Chemical Engineering Science, 57, 3185.
Burns, A. D., Frank, T., Hamill, I. and Shi, J., (2004), "The Favre Averaged Drag
Model for Turbulent Dispersion in Eulerian Multiphase Flow", Proceedings of the
Fifth International Multiphase Flow, Yokohama, Japan.
Chesters, A.K., (1991), "The Modeling of Coalescence Processes in Fluid-Liquid Dispersion: A Review of Current Understanding", Trans. I. Chem. Eng., 69, 259.
Chen p., Sanyal J., Dudukovic M. P. (2005). "Numerical simulation of bubble columns
flows: effect of different breakup and coalescence closures". Chemical Engineering Science, 60, 1085.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2007 a), "On the modeling of population balance
in isothermal vertical bubbly flows - average bubble number density approach".
Chemical Engineering Process, 46, 742.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2007 b), "On the numerical study of isothermal vertical bubbly flow using two population balance approaches". Chemical
Engineering Science, 62, 4659.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2008), “Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes”, AIChE Journal, 54(7), 1689. Cheung S.C.P., Yeoh G.H., Tu J.Y. (2009 a), “A review of population balance
modelling for isothermal bubbly flows”, Journal of Computational Multiphase
Flows, 1(2), 161.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2009 b), “Direct Quadrature Method of Moments for Isothermal Bubbly Flows”, The 7th International Conference on Reference 121 Computational Fluid Dynamics in the Minerals and Process Industries, December 2009, Melbourne, Australia.
population balance equation". Journal of computational and applied mathematics,
196, 619.
Dorao C.A., Lucas D., Jakobsen H.A., (2008), "Prediction of the evolution of the
dispersed phase in bubbly flow problems". Applied mathematical modeling, 32,
1813.
Duan X.Y., Cheung S.C.P., Yeoh G.H., Tu J.Y., Krepper E. and Lucas D., (2011),
“Gas-liquid flows in medium and large vertical pipes”, Chemical Engineering
Science, 66, 872. Reference 122
Ekambara, K., Sanders, R. S., Nandakumar, K., Masliyah, J. H., (2008), "CFD
simulation of bubbly two-phase flow in horizontal pipes". Chemical Engineering
Journal, 144, 277.
Haoues, L., Olekhnovitch, A., Teyssedou, A., (2009), "Numerical study of the influence
of the internal structure of a horizontal bubbly flow on the average void fraction".
Nuclear Engineering Design, 239, 147.
Hibiki T., Ishii M. (2000), "One-group interfacial area transport of bubbly flows in
vertical round tubes", International Journal of Heat and Mass Transfer, 43, 2711.
Reference 123
Hibiki T., Ishii M., Xiao Z.