Contents & References of Investigating the density functional theory of tautomeric equilibria of heteroaromatics - NBO study
List:
Chapter One - Introduction. 1
1-1 Introduction 2
2 Chapter Two-Tautomerism in aromatic compounds 4
2-1 Introduction 5
2-2 Objectives of this chapter. 5
2-3 phenomenon of tautomerism. 6
2-4 The importance of tautomerization in vital systems. 8
2-4-1 tautomerization reactions. 8
2-5 The importance of tautomerization in pharmaceuticals. 10
2-6 aromatic compounds. 11
2-6-1 aromatic character and Huckel's 4n+2 rule. 11
2-6-2 aromatic compounds, heteroaromatic and resonance energy. 12
2-7 polycyclic aromatic hydrocarbons (PAH). 12
2-8 The effect of polycyclic aromatic hydrocarbons on humans. 13
2-9 The importance of computational methods in medicines. 16
2-10 Introduction to protonics. 18
2-11 Introduction of lamivudine. 24
2-12 Introduction of Negusium. 28
3 Chapter 3- Studying about the density function theory. 34
3-1 An overview of computational chemistry. 35
3-2 computational chemistry. 36
3-2-1 molecular mechanics. 37
3-2-2 Electronic structure methods. 39
3-2-2-1 Semi-empirical methods. 39
3-2-2-2 initial calculation methods. 40
3-2-2-3 practical methods of density. 41
3-3 chemical model. 41
3-4 Definition of chemical model. 42
3-5 hybrid models. 42
3-6 Computer calculations in chemistry. 43
3-6-1 Introduction to Hyperchem software. 45
3-6-2 Introduction to Gaussian 98 software. 45
3-7 Method. 47
3-7-1 Hartree-Fack method. 47
3-7-2 Density Functional Theory (DFT) method 49
3-8 Basis set. 50
3-9 types of basic sets. 52
3-9-1 Basic functions of STO-nG. 52
3-9-2 Split valence basis sets. 52
3-9-3 polarized base set. 52
3-10 Spectroscopy in Computational Chemistry. 53
3-10-1 IR infrared spectroscopy. 53
3-10-2 nuclear magnetic resonance spectrometer (NMR). 55
3-10-2-1 Chemical displacement. 56
3-10-2-2 Chemical coating. 57
3-10-2-3 The relationship between chemical displacement and chemical coating. 58
3-10-3 phenomenon of tautomerism and NMR. 59
3-11 calculations of natural bonding orbitals (NBO) 59
3-11-1 occupation number. 61
3-11-2 NBO output. 62
4 Chapter Four - Calculations 65
4-1 Introduction of calculated compounds. 66
4-2 Checking the energy gap, chemical potential, chemical hardness, electrophilicity and Nmax. 69
4-3 Checking the reaction enthalpy. 94
4-4 Investigating the degree of orbital participation p. 96
4-5 Investigation of chemical displacement and wear coefficient. 105
4-5-1 Calculations related to isotropy ?. 105
4-5-2 Calculations related to anisotropy (?). 123
4-5-3 Calculations related to molecular asymmetry (?). 158
4-6 checking the length of links. 170
4-7 checking the angle of links. 174
4-8 Checking the amount of charge and the number of electrons. 178
4-9 Investigating the resonance energy of transitions in the studied systems. 199
4-10 Comparison of charge transfer in some bonds of drug tautomers 202
4-11 Prediction of computational IR spectra. 205
5 Chapter Five - Discussion and conclusion. 209
5-1 Checking the results of energy gap, chemical potential, chemical hardness, electrophilicity. 210
5-2 The results of investigating the dipole moment. 211
3-5 link length check results. 213
4-5 zero point energy 214
5-5 results of investigation of chemical shift and coverage coefficient in tautomers. 215
1. Protonix and Negsium. 215
2. Lamivudine. 217
5-6 results of natural molecular orbital (NBO) 219
List of sources and reference:. 232
Source:
[1] A. Dixon, M., Biochem. J., 20 (1926) 703. b. Booth, V. H., Biochem. J., 32 (1938). 494.
[2] Rundles, R.W., Wyngaarden, J.B., Hitchings, G. H., Elion, G. B. and Silberman, H.P., Trans. Assoc. Am. Phys., 76 (1963) 126. [3] Rajagopalan, K.V., Adv. Enzymol., 64 (1991) 215. [4] Coughlan, M. P. and Rajagopalan, K.V., Eur. J. Biochem., 105(1980) 81. [5] F. M. Tao and Y. K. Pan, J. phys. Chem. 95, 3582(1991).
[6] P.Friedman.Molecular Quantum mechanics Atkins,R.s. Third Edition, Oxford University Press Inc. New York. 1997.
[7] E. Canes and B. Mennucci, J.Chem. Phys. 114,4744 (2001).
[8] H. Haberland, Ed.: w.Ekardt, "Metal Clusters". John Whitley & Sons, 1999, p. 181.
[9] En. Wikipedia.org/Phenylketonuria.
[10] C.M. Qeller and M.S. Plesset, phys.Rev. 46, 618 (1934).
[11] I. Antes, W. Thiel, J. phys. Chem.A, 103 (1999), 9290.
[12] V. Thery, D. Rinaldi, J. L. Rivail, B. Maigret. G. G. Frenczy, J. Comp. chem., 15 (1994), 269.
[13] M. Schmidt, J. Donges, Th. Hippler, and H. Haberland, phys.Rev. Lett. 90 (2003), 103401.
[14] M. Cossi, N. Rega, G. Scalmani, and V. Barone, J. Chem. Phys. 114. 5691 (2001).
[15] A. Reviland N. Florsch, 2010. Determination of permeability from spectral induced polarization
in granular media. Geophys. J. Int. (2010) 181,1480–1498
[16] Edmilson Helton Rios, Paulo Frederico de Oliveira Ramos, Vinicius de França Machado, Giovanni Chaves Stael, Rodrigo Bagueira de VasconcellosAzeredo, 2011. Modeling rock permeability from NMR relaxation data by PLS regression. Journal of Applied Geophysics 75 (2011) 631–63. [17] Lee Slate, 2007. Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries. A Review.SurvGeophys (2007) 28:169–197.
[18] Smith, S. J.; Sutcliffe B. T., (1997). "The development of Computational Chemistry in the United Kingdom". Reviews in Computational Chemistry 70: 271-316.
[19] Schaefer, Henry F. ??? (1972). The electronic structure of atoms and molecules. Reading, Massachusetts: Addison-Wesley Publishing Co. pp. 146.
[20] Boys, S.F.; Cook G. B., Reeves C. M., Shavitt, I. (1956). "Automatic fundamental calculations of molecular structure". Nature 178 (2): 1207. Doi:10,1038/17811207a0.
[21] Richards, W. G.; Walker T.E. H and Hinkley R. K. (1971). A bibliography of abinitio molecular wave functions. Oxford: Clarendon Press.
[22] Preuss, H. (1968). International Journal of Quantum Chemistry 2: 651.
[23] Buenker, R. J.; Peyerimhoff S. D. (1969). Chemical Physics Letters 3: 37. [24] Schaefer, Henry F. III (1984). Quantum Chemistry. Oxford: Clarendon Press.
[25] Streitwieser, A.; Brauman J. I. and Coulson C. A. (1965). Supplementary Tables Of Molecular Orbital Calculations. Oxford: Pergamon Press.
[26] Pople, John A.; David L. Beveridge (1970). Approximate Molecular Orbital Theory. New York: McGraw Hill.
[27] Allinger, Norman (1977). "Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms". Journal of the American Society 99: 8127-8134. doi:10,1021/ja00467a001.
[28] Fernbach, Sidney; Taub, Abraham Haskell (1970). Computers and Their Role in the Physical Sciences. Routledge. ISBN 0677140304.
[29] Reviews in Computational Chemistry vol1, Preface.
[30] A.D. Becke, J. Chem. Phys. 98 (1993) 5648. [31] C. Lee, W. Yang, R.G. Parr, Phys. Rev., B37 (1988) 785.
[32] Seidman M (1950) Studies on 3-(?-phenyl-?-acetylethyl)-4-hydroxycoumarin. PhD Thesis, University of Wisconsin.
[33] Bravic G, Gaultier J, Hauw C (1973) Crystal structure of an antivitamin K, warfarin. C R Acad Sci Paris Ser C 277(22):1215-1218. [34] Shahzadi S, Ali S, Asif I, Ashraf R, Jin G-X (2006) The mechanism and crystal structure of 2-methoxy-2-methyl-4-phenyl-3,4,4a,10b-tetrahydro-2H,5H-pyranol (3,2-c) chromen5-one. Acetal of warfarin acid. Turkish J Chem 30(6):703-709.
[35] Pullman B, Berthod H, Dreyfus M. "Amine-Imine Tautomerism in Adenines", theoret. Chim. Acta (Berl), 1969; 15: 265-268.
[36] Imperiali B, O'Connor SE, Hendrickson T, Kellenberger C. "Chemistry and biology of asparagines-linked glycosylation", Pure Appl. Chem., 71: 777-787.