Contents & References of Preparation and identification of molybdenum complex stabilized on activated carbon and investigating its catalytic properties
List:
Table of Contents
Chapter One
1-1-Catalysts 2
1-1-1-Types of Catalysts 2
1-1-1-1-Homogeneous Catalyst. 2
1-1-1-2-heterogeneous catalyst. 3
1-1-2-Methods to increase the catalyst level. 3
1-1-3-substrate catalyst. 4
1-1-3-1-activated carbon. 5
1-1-3-1-1-types of active carbon. 6
1-1-3-1-2-Active carbon structure. 7
1-1-3-1-3-size and structure of active carbon pores. 8
1-1-3-1-4-characteristics of activated carbon. 9
1-1-4-catalytic epoxidation reaction of alkenes 10
1-1-4-2-epoxidation of alkenes with catalysts containing molybdenum. 11
1-1-4-3- review of past works. 12
Chapter Two
2-1-Investigation of Alkene Depolymerization by Molybdenum Heterogeneous Catalytic Systems and Molybdenum Recrystallization Stabilized on Functionalized Active Carbon 21
2-1-1-Used Materials 21
2-1-2-Used Devices 22
2-1-2-1-Device Gas chromatography (GC) 22
2-1-2-2-elemental analysis device (CHN) 23
2-1-2-3-Fourier transform infrared spectrometer (FT-IR) device 23
2-1-2-4-ICP device. 23
2-1-2-5-scanning electron microscope device (SEM) 23
2-1-2-6-thermal analysis device (TG/DTA) 23
2-1-3-investigation of epoxidation of alkenes by heterogeneous catalytic systems of molybdenum stabilized on functionalized activated carbon 24
2-1-3-1-functionalization of active carbon with carboxylic acid group. 24
2-1-3-2-Activation of activated carbon with thionyl chloride. 24
2-1-3-3-immobilization of diethylenetriamine ligand (dien) on activated carbon (AC) 25
2-1-3-4-reaction of salicyl aldehyde with functionalized activated carbon 25
2-1-3-5-preparation of diaxo bis (acetylacetonato) molybdenum complex MoO2(acac)2 26
2-1-3-6-Preparation of heterogeneous catalysts AC-dien-MoO2(acac) 26
2-1-3-7-Preparation of heterogeneous catalysts AC-Schiff-base-MoO2(acac) 27
2-1-4-Preparation of urea hydrogen peroxide oxidant. 27
2-1-5-epoxidation of alkenes with tertiobutyl hydrogen peroxide with AC-dien-MoO2 (acac) catalyst. 29
2-1-5-1-Effect of type of solvent. 28
2-1-5-2-Effect of oxidant type 28
2-1-5-3-Effect of time. 29
2-1-5-4-Effect of catalyst amount. 29
2-1-5-5-Effect of oxidant amount 30
2-1-5-6-Effect of solvent amount. 30
2-1-5-7-temperature effect 30
2-1-5-8-recovery of molybdenum heterogeneous catalyst in cyclooctane epoxidation. 31
2-1-5-9-General working method for epoxidation of alkenes in the presence of heterogeneous catalyst AC-dien-MoO2(acac) 31
2-1-5-10-Examination of heterogeneous catalyst AC-Schiff-base-MoO2(acac) 31
Chapter 3
3-1-Importance and purpose of research. 33
3-2-identification and investigation of two heterogeneous catalysts AC-dien-MoO2(acac) and AC-Schiff-base-MoO2(acac. 36
3-2-2-acylation of activated carbon. 36
3-2-3-amination of activated carbon. 37
3-2-4-complex AC-diene-MoO2(acac) heterogeneous catalyst 38
3-2-5-Schiff base ligand on activated carbon substrate 39
3-2-6-AC-Schiff-base-MoO2(acac) heterogeneous catalyst complex 40
3-2-7- Morphological investigation by SEM. 41
3-2-8-elemental analysis of CHN and ICP 43
3-2-9-thermal analysis (TG/DTA) 43
3-3-investigation of the catalytic properties of prepared heterogeneous catalysts and optimization of effective factors in cyclooctane epoxidation 46
3-3-1-investigation of the effect of solvent type. 46
3-3-Checking the effect of oxidant 50
3-3-Checking the effect of the amount of catalyst 55
3-3-5-Checking the effect of the amount of solvent 60
3-3-7-Investigating the effect of temperature 62
3-3-8-Investigating the recovery of heterogeneous catalysts AC-dien-MoO2(acac) and AC-Schiff-base-MoO2(acac) in cyclooctane epoxidation 65
3-3-9-Investigating the catalytic properties of AC-dien-MoO2(acac) and AC-diene-MoO2(acac) catalysts AC-Schiff-base-MoO2(acac) in epoxidation of other alkenes 67
3-3-10-Proposed mechanism for epoxidation of cyclooctane with heterogeneous catalyst AC-dien-MoO2(acac) 70
3-4-Conclusion. 72
3-5-Foresight. 74
Appendix. 75
Resources: 76
Source:
[1] E. Myasaki, J. Catal. 65 (1980) 84-94.
[2]N. Armor, Catal. Today. 163 (2011) 3-9.
[3] J. Hagen, Ind. Catal: a practical approach. Wiley-VCH, Weinheim, (1999) Akta kim Indonesia. Academia Press, 3 (2007) 1-10.
[6] E. R. Milaeva, O. A. Gerasimova, A. L. Maximov, E. A. Lvanova, E. A. Karachanov, Catal. Commun. 8 (2007) 2069-2075.
[7] T. J. Dikerson, N. N. Resad, K. D. Janda, Chem. Rev. 102 (2002) 3275-3280.
[8] M. Moghadam, S. Tangestaninejad, M. Hosein Habibi. V. Mirkhani. J. Mol. Catal A, 217 (2004) 9-12.
[9] F. Traina, N. Pernicon. La Chem. El. Ind. 52 (1970) 1-5.
[10] C. L. Thomas. Catal. Process. Provn. Catal. London: Academia Press (1970).
[11] B. Delmon, J. Term. Anal. Calor. 90 (2007) 49-65.
[12] M. Perez. Cadenas, L. J. Lemus- Yegres, M. C. Roman-Martinez, C. Salinas- Martinez de lecea, App Catal A: Gen 402 (2011) 132-138.
[13] M. Masteri-Farahani, S. Abednatanzi, Appl Catal. A: Gen 478 (2014) 211–218.
[14] Bandosz, T. J., Ania, C.O, Act. Carbon. Surf. Environment. Rem. (2006) 159-229.
[15] Prof. S. Mishra, Dep. Chem. Eng. Natl. Inst. Technol. Rourkela (2011) 2-14.
[16] Jo, W. K., Shin, S. H., Hwang, E. S, J. Hazard. Mater. 191 (2011) 234-239.
[17] L. Li, P. A. Quinlivan, D. R.U. Knapp, Carbon 40 (2002) 2085–2100.
[18] M. Diaz, J.A., M. Gullon, T. J. Bandosz, Act. Carbon. Surf. Environment. Rem. (2006) 1-47.
[19] Ch. Y. Huang, B. Huang, M. Cai, J. Taiwan. Inst. Chem. Eng. 42 (2011) 837-842.
[20] P. J. F. Harris, Z. Liu, J. Phys: Cond. Mater. 20 (2008).
[21] S. Mishra, Preparation and Characterization of Microporous Activated Carbon from Biomass and its Application in the Removal of Chromium(VI) from Aqueous Phase, Dep.Chem. Eng. Natl. Inst. Technol., India, (2012) 7-18.
[22] C. Altavilla, E. Cillberto, C. Press, Inorg. Nanopart. (2011) 1.
[23] S. V. Mikhalovsky, Carbon 35 (1997) 1367-1374.
[24] B. Comils, W. A. ??Herrmann, Aqueous-Phase Organometallic Catalyst. Wiley VCH Verlag GMbH, New york (2002).
[25] H. Vrubel, K. J. Ciuffi, G. P. Ricci, F. S. Nunes, Sh Nakagaki, App Catal. A: Gen 368 (2009) 139–145.
[26] A. M. Bond, W. Miao, C. L. Roston, Longmuir16 (2007) 6004-6012.
[27] A. R. Silva, M. Martins, M. Madalena, J. L. Figueiredo, C. Freire and B. de Castro. Eur. J. Inorg. Chem (2004) 2027-2035.
[28] A. Mavrogiorgou, M. Papastergiou, Y. Deligiannakis, M. Louloudi, J. Mol. Catal. A: Chem (2014) 1-34.
[29] F. Esnshari, M. Moghadam, V. Mirkhani, Sh. Tangestaninejad, I. Mohammadpoor-Baltork, A. R. Khosropour, M. Zakeri, Mater. Chem. Phys. 137 (2012) 69-75.
[30] F. Maia, R. Silva, A.R, Silva, C. Freire, M. F. R. Pereira, J. L. Figueiredo, J. Colloid Interface Sci. 328 (2008), 314-323.
[31] A. R. Silva, C. Freire, Carbon 42 (2004) 3027-3030.
[32] M. Cardoso, A. R. Silva, C. Freire, Appl. Catal. A: Gen 285 (2005) 110-118.
[33] A. R. Silva, V. Budarin, J. H. Clark, C. Freire, Carbon 43 (2005) 2096-2105.
[34] A. R. Silva, V. Budarin, J. H. Clark, C. Freire, B. de Castro, Carbon 45. (2007) 1951–1964.
[35] A. Valenta, A. M. Botelho de Rego, M. J. Reis, I. F. Silva, A. M. Ramos, J. Vital Appl Catal 207 (2001) 221–228.
[36] A. R. Silva, J. L. Fiueiredo, C. Freire, Catal. Today. (2005) 102-103.
[37] A. Salimi, A. Korani, R. Hallaji, R. Khoshnavazi, H. Hadadzadeh, Anal. Chem. Acta. 635 (2009) 63-70.
[38] A. R. Silva, C. Freire, J. L. Figueiredo, Langmuir 18 (2002) 8017-8024.
[39] A. Silva, M. Martins, M. Freitas, A. Valente, C. Freire, B. Castro, J. Figueiredo. Micropor. Mesopore. Mater., 55 (2002) 275-284.
[40] M. Mirzaee, Ph. d.