Contents & References of Preparation of a new nano-sized ion template polymer for the separation and preconcentration of nickel metal ions from aqueous solutions
List:
The first chapter. 1
Introduction, theory and history. 1
1-1- Molecular or ionic polymers. 1
1-2- History. 3
1-3- Polymer-template molecule interactions. 4
1-3-1- covalent molding. 4
1-3-2- non-covalent molding polymerization. 6
1-3-3- pseudo-covalent interaction. 7
1-4- polymer texture. 7
1-5- ionic mold polymers. 8
1-6- The advantages of molded polymers compared to conventional absorbents for solid phase extraction. 9
1-7- types of molding polymer production methods. 9
1-7-1- model molecule. 10
1-7-2- functional monomer. 10
1-7-3-ligand. 13
1-7-4- starter. 13
1-7-5-crosslinking monomer. 14
1-8-Polymerization conditions. 14
1-9- Polymerization methods. 15
1-9-1- condensation polymers. 15
1-9-2- chain polymerization reactions. 15
1-9-2-1- bulk polymerization. 17
1-9-2-2- solution polymerization method. 19
1-9-2-3- Suspension polymerization 20
1-9-2-4- Emulsion polymerization method. 20
1-9-2-5- Sedimentation polymerization 21
1-10- Importance and applications of molded polymers. 21
1-10-1- Separation. 22
1-10-2- Membrane construction. 23
1-10-3- Making sensor or electrode. 24
1-10-4- synthetic receptors. 25
1-10-5- Catalysts 25
1-11- Nickel element. 26
1-12- Review of past works. 27
The second chapter. 30
Experimental part. 30
2-1- Required devices and equipment. 30
2-2- Necessary chemicals. 30
2-3- Synthesis of ion template polymer nanoparticles for nickel ion measurement. 32
2-4- Synthesis of unmolded polymer. 33
2-5-Solution. 33
2-5-1- Preparation of necessary solutions to check the formation and determine the ratio of metal to ligand complex. 33
2-5-2- Preparation of mother nickel solution. 33
2-5-3- preparation of dimethylglyoxime mother solution for spectrophotometric measurement. 34
2-5-4- Preparation of solutions of different cations to investigate the effects of disturbance. 34
2-6- Preparation of water samples for nickel measurement. 34
2-7- Preconcentration of nickel ion using prepared ion template polymers. 34
The third chapter. 36
Checking the results and conclusions. 36
3-1- Investigating the formation and determining the ratio of metal to ligand complex between nickel ion and murine. 36
3-2- Properties of nickel ion mold polymer. 39
3-2-1- Colorimetry. 39
3-2-2- FT-IR spectrum of nickel ion mold polymer. 39
3-2-3- electron microscope image. 40
3-3- Preconcentration and separation of nickel ions using synthesized ion template polymers. 42
3-3-1- Examining the effect of pH on extraction. 42
3-3-2- Checking the amount of absorbent. 44
3-3-3- Examining the effect of the type of detergent acid. 44
3-3-4- Examining the effect of detergent acid concentration. 45
3-3-5- Investigating the effect of detergent acid volume. 45
3-3-6- Examining the effect of time on the absorption and desorption process of nickel ions. 48
3-3-7- The initial volume of the sample and calculation of the final limit of dilution. 49
3-3-8- Studying the frequency of use of polymer nano particles of ion mold. 50
3-3-8- absorption capacity. 51
3-3-9- Figures of merit of the method. 52
3-3-10- Linear range. 52
. 3-3-11- detection limit of the method. 53
3-3-12- selectivity of the method. 54
3-3-13- Reproducibility of the method. 55
3-3-14- Application of the present method for preconcentration and measurement of nickel ion in water samples. 55
3-4- Conclusion and future perspective. 58
Resources: 60
Source:
[1] W. Zhihua, L. Xiaole, Y. Jianming, Q. Yaxin, L. Xiaoquan, Electrochim. Acta. 58 (2011) 750.
[2] C. He, Y. Long, J. Pan, K. Liu, J. Biochem. Biophys. Methods. 70 (2007) 133
[3] L. Q. Lin, J. Zhang, Q. Fu, L. C. He, Y. C. Li, Anal. Chim. Acta. 561 (2006) 178.
[4] I. L. Garc, N. Campillo, I. A. Jerez, M. H. Cordoba, Spectrochim. Acta B. 58 (2003) 1715.
[5] F. H. Dickey, J. Phys. Chem. 59) 1955(695.
[6] R. Curti, U. Colombo, J. Am. Chem. Soc. 74 (1952) 2961.
[7] G. Wullf, A. Sarahan, K. Zabrocki, Angew. Chem. Int. Ed.Eng.11 (1972) 341.
[8] L. Andersson, B. Sellergren, K. Mosbakh, Tetrahedrom. Lett. 15 (1984) 45.
[9] G. Wullf, A. Sarahan, K. Zabrocki, Tetrahedrom. Lett. 44 (1972) 4329.
[10] A. L. Jekins, O. M. Murryay, Anal. Chem. 71 (1991) 373.
[11] R. Arshady, K. Mosbach, Makromol. Chem. 182 (1981) 163.
[12] K. J. Shea, D. Y. Ssaki, J. Am. Chem. Soc. 113 (1991) 4109.
[13] A. Koper, M. Grabarczyk, J. Electroanal. Chem.663 (2011) 67.
[14] G. Wulff, R. Schonfeld, Adv. Maths. 10 (1998) 957.
[15] C. Yu, O. Ramstrom, K. Mosbach, Anal. Lett. 30 (1997) 2123.
[16] E. Mladenova, I. Dakova, I. Karadjova, M. Karadjov, Microchem. J. 101 (2012) 59.
[17] J. L. Manzoori, H. Abdolmohammad-Zadeh, M. Amjadi, Microchim. Acta 159 (2007) 71.
[18] N. Dalalli, N. Javadi, Y. Kumaragrawal, Turk. J. Chem. 32 (2008) 561.
[19] M. Shamsipur, A. Besharati, React. Funct. Polym. 71 (2011) 131.
[20] Y. Liu, Y. Zai, X. Chang, Y. Guo, S. Meng, F. Feng, Anal. Chim. Acta. 575 (2006) 159.
[21] C. He, Y. Long, J. Pan, K. Li, F. Liu, J. Biochem. Biophys. Methods. 70 (2007) 133.
[22] L. I. Andersson, J. Chromatogr B. 739 (2000)163.
[23] A. Beltran, F. Borrull, P. A.G. Cormack, R.M. Marc, Anal. Chem. 29 (2010) 1363.
[24] L. Fischer, B. Muller, B. Ekberg, K. Mosbakh, J. Am. Chem. Soc. 113 (1991) 9358.
[25] V. T. Remcho, Z. Tan, J. Anal.Chem. 71 (1999) 248.
[26] F. Qiao, H. Sun, H. Yan, K. H. Row, Chromatographia. 64 (2006) 625.
[27] M. Rammika, Thesis for Master of Science in Chemistry, Graduate Faculty of Rhodes University, Grahamstown, South Africa. 2010.
And. Hadadiyasal, Fundamentals of Polymerization Engineering, Amir Kabir University Publications, Jad I, second edition 2015, chapter 5 [28]
[29] B. Sellergren, B. Ekberg, K. Mosbach, J. Chromatogr A. 347 (1985) 1.
[30] A. Rachkov, N. Minoura, J. Chromatogr A. 889 (2000) 111.
[31] B. R. Hart, K. J. Shea, J. Am. Chem. Soc. 123 (2001) 2072. [32] K. Dabulis, A.M. Klibanov, Biotechnol. Bioeng. 39 (1992) 176.
[33] P. T. Vallano, V. T. Remcho, J. Chromatogr. A. 887 (2000) 125.
[34] A. Kimaro, L. A. Kelly, G. M. Murray, Chem. Commun. 55 (2001) 1282.
[35] T. Rosatzin, L. I. Andersson, W. Simon, K. Mosbach, J. Chem. Soc. 2 (1991) 1261.
[36] G. M. Murray, A. L. Jenkins, A. C. Bzhelyansky, O. M. Uy, JHUAPL. Tech. Digest. 18 (1997) 432.
[37] P. Liang, E. Zhao, Q. Ding, D. Du, Spectrochim. Acta B. 63 (2008) 166.
[38] E. Mladenova, I. Dakova, I. Karadjova, M. Karadjov, Microchem. J. 101 (2012) 59.
[39] D. Kriz, L. Ramstrom, A. Srensson, K. Mosbakh, Anal. Chem. 67 (1995) 2142.
[40] K. Haput, React. Funct. Polym. 41 (1999) 125.
[41] http://fazelchem.persiangig.com/document/.
[42] A. Ersoz, R. Say, A. Denizli, Anal. Chim. Acta. 502 (2004) 91.
[43] X. Chang, H. Zheng, Q. He, Z. Hu, Anal. Chim. Acta. 577 (2006) 225.
[44] J. O. Romani, A. M. eiro, P. B. Barrera, A. M. Esteban, Anal. Chim. Acta. 630 (2008) 1.
[45] M. Saraji, H. Yousefi, J. Hazard. Mate. 167 (2009) 1152.
[46] J. O. Roman?, A. M. Pineiro, P. Barrera, A. M. Esteban, Microchem. J. 93 (2009) 225.
[47] D. Singh, S. Mishra, Applied Surface Science. 256 (2010) 7632.
[48] M. Khajeh, Z. Shamohammadi, E. Sanchooli, Chem. Eng. J. 166 (2011) 1158.
[49] M. Behbahani, M. Taghizadeh, A. Bagheri, H. M. Salarian, A. Tootoonchi, Micro. Chim. Acta. 178 (2012) 429.
[50] H. R. Rajabi, M. Shamsipour, S. M. Pourmortazavi, Mater. Sci. Eng C. 33 (2013) 3374.
[51] M. Shamsipur .H. R. Rajabi, S. M. Pourmortazavi, M. Roushani. Spectrochim. Acta A. 117 (2014) 24. [52] M. Shamsipur .H. R. Rajabi, Microchim. Acta. 180 (2013) 243.
[53] Z. Marczenko, M.