Contents & References of Fabrication and evaluation of polysulfone nanocomposite membrane of mineral nanoparticles
List:
Page
Abstract. 1
Introduction. 2
The first part of library studies. 3
1-1-Research objectives. 4
1-2-Hypotheses. 4
1-3-Membrane. 4
1-4-Division of membrane. 5
1-4-1-Division based on the mechanism governing separation. 5
1-4-2-Division based on membrane type.5
1-4-2-1-Polymer membranes.6
1-4-2-2-Liquid membranes.6
1-4-2-3-Ceramic membranes.6
1-4-2-4-Metal membranes.7
1-4-3-Division based on The basis of the geometric shape of the membrane. 9
1-4-4-Division based on the structure of the membrane. 9
1-5-Membrane properties. 10
1-6-Membrane applications. 10
1-7-Membrane processes. 11
1-7-1-Reverse osmosis. 11
1-7-2-Nanofiltration.11
1-7-3-Ultrafiltration.12
1-7-4-Microfiltration.14
1-8-Composite.14
1-8-1-What is composite? 14
1-8-2-From straw to composites 15
1-6-3-other applications of composites. 16
1-8-4-composite manufacturing. 17
1-8-5-methods of nanocomposite manufacturing. 18
1-9-use of membrane technology. 19
1-10-main axes of membrane application. 19
1-10-1 water industry and Sewage. 19
1-10-2-Food industries. 20
1-10-3-Pharmaceutical and medical industries. 20
1-10-4-Air purification and gas purification. 20
1-10-5-Other applications. 21
1-11-Mixed bed membranes. 21
1-12-Types of membranes.22
1-13-Permeation solubility model.22
1-14-Necessary equipment to check the structure of membrane performance.25
1-15-History of membrane development.25
1-16-History of mixed bed membranes.26
Part two: materials, equipment and works Experimental. 28
2-1-Appropriate selection of polymer phase. 29
2-1-1-Polysulfone polymer membrane. 29
2-1-2-Reasons for choosing nanoclay, nanosilica and polymer. 31
2-2-Experimental works. 33
2-2-1-Materials and equipment. 33
2-2-2-Construction Membrane.33
2-2-2-1-Making PSf ultrafiltration polymer membrane film.33
2-2-2-2-Making nanocomposite membranes.34
2-2-3-Pure water flow.35
2-2-3-1-Membrane module.35
2-2-3-2-Test Percolation.35
2-2-3-3-How to conduct experiments.
2-2-3-4-Calculating the amount of pure water passing through the membrane.36
2-3-Structural evaluation methods.36
Part three: Results and discussion.37
3-1-Structural evaluation.38
3-1-1-Spectrum Fourier transform infrared (FTIR) measurement. 38
3-1-2-Scanning electron microscope (FESEM) analysis. 39
3-1-3-Atomic force microscope (AFM). 42
3-2-Results of liquid separation tests. 45
3-2-1-Permeability test. 45
Section Fourth: conclusions and suggestions. 51
4-1-conclusion.52
4-2-suggestions.54
References. 55
Source:
] 1] G. Srikanth, (2008) “Membrane separation processes” technology and Business opportunities, water conditioning & purification, pp 1-4.
] 2] Baker R W. (2004). Membrane technology and applications, znd ed. Chichester. wiley,.
[3] A. Bakhtiari, (1389 Shahrivar) "Making membranes mixed with polymer base for natural gas sweetening". PhD thesis in Chemical Engineering, Faculty of Chemical Engineering, University of Science and Technology, Tehran. 4] R. Sharma, pp1-95, (2008) “Membrane Filtration”, available from: http://www.ozscientific.com
] 5] “Synthesis and catalytic membranes”), 2008), Institute of polymer research, center for Membranes and structured materials, Available from: http://www.gkss.de
]6] “Synthetic polymeric membranes that are used with the four filtration technologies” (2008), pp1 – 2.
]7] T. dev Naylor, (1996) “Polymer Membranes”, Rapra technology limited, volume 8, No. 5,.
]8] “Ceramic membranes” (2008), lenntech water treatment & air purification, Available from: http://www.lenntech.com
[9] Sarmad Heydari. (2008), "Metallic Membranes", Iranian Engineers Club, Chemical Engineering Articles.
] 10] J. Baggote, E. Dennis, (1995) "Membranes", pp1-10,.
]11] J. Bomben,) 2008( "Membrane separation", SRI consulting business intelligence,.
]12] E. T. Thostenson, C. Li, T. w. Chou,Chou, composite sci. tech. (2005) 491.
]13] “Areas of application of membrane technology” (2008), Available from: http:// www.itan.ir
]14] S. Kulprathipanja, R.W. Neuzil, N.N. Li, separation of fluids by means of mixed matrix membranes, us. (1988). Patent u, 740,219.
]15] B. Shimekit, H. Mukhtar, and T. Murugesan, (2011) "Prediction of the relative permeability of gases in mixed matrix membranes" Journal of membrane science, vol. 373, pp. 152-159.
[16] Mahajan and W. J. Koros, (2000) "Factors controlling successful formation of mixed matrix gas separation materials", Ind. Eng. Chem. Res, vol. 2692-2696, (2010) M. A. Aroon, and M.M.
[18] F. R. Mahajan. (2000) "Characterization and Modeling of Mixed Matrix membrane materials," PhD Thesis, University of Texas, Austin,.
[19] W. J. K. D. Q. Vu, S.J. Miller, (2003) "Mixed matrix membranes using carbon molecular sieves, ? modeling permeation behavior" J. Membr. Sci, vol. 211 pp. 335-348.
[20] Blanco, J. F. Sublet, J. Nguyen, Q. T. Schaetzel, P. (2006) "Formation and morphology studies of different polysulfone-based membranes made by wet phase inversion process", J.membr. Sci. 283, P.P.27-37,.
[21] Liu, Y. Koops, H. 2003( "Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of poly ethylene glycol to the dope and bore liquid solution", J. Membr. Sci. 223. 187-199,.
[22] Kim. J. H. Kang, M. S. Kim, C. K, (2005) "Fabrication of membranes for the liquid separation. Part 1. Ultrafiltration membranes prepared from novel miscible blends of polysulfone and poly (1-vinylpyrrolidone-co-acrylonitrile) copolymers", J. Membr. Sci. 265, P.P.167-175.
[23] Shen, L. Q, Xu, Z. K, Z. M, Xu, Y. Y., (2003) "ultrafiltration hollow fiber membranes of sulfonated polyetherimide/polyetherimide blends: preparation, morphologies and antifouling properties", J. Membr. Sci. 218, P. P. 279-293,.
[24] Zhou, C., Wang, Z. Liang, Y. Yao, J., (2008) "Study on the control of pore sizes of membranes using chemical methods part ?. Optimization factors for preparation of membranes", desalination 225, P. P. 123-138,.
[25] Ulbricht, M. Belfort, G. (1995) "Low temperature surface modification of polyacrylonitrile ultrafiltration membranes. 1. Plasma treatment effects" J. Appl. Polym. Sci. 56, P.P.325-343.
[26] Taniguchi, M. Belfort, G., (2004) "Low protein fouling synthetic membranes by uv-assisted surface grafting modification: varying monomer type", J. Membr. Sci. 231. P. P. 147-157. [27] Rahimpour, A. Madaeni, S. S., Taheri, A. H. Mansourpanah, Y, 2008( Coupling TiO2 nanoparticles with uv irradiation for modification of polyethersulfone membranes", Membr. Sci. 313, p.p.158-169.
[28] Akbari, A. Desclaux, S. Rouch, J. C. Aptel, P. Remigy, J. C. (2006) new uv-photografted nanofiltration membranes for the treatment of colored textile dye effluents” J. Membr. Sci. 286. P. P. 342-350.
[29] Yamagishi, H. Crivello, J. Belfort, G. (1995) "Development of a novel photochemical technique for modifying poly(arylsulfone) ultrafiltration membranes", J. Membr. Sci. 105, P. P.237-247,.
[30] M. S. Jyothi, Vignesh Nayak, Mahesh Padki, R. Geetha Balakrishna, A. F. Ismail (2014) “The effect of UV irradiation on Psf/TiO2 Mixed matrix membrane for chromium rejection” Desalination 354189-199. of emulsion poly(vinyl chloride)/TiO2 nanocomposite ultrafiltration membrane” Journal of Membrane Science 472, P.P. 185-193.
[32] Baker, R. W. (2004).