Contents & References of Gibbs free energy calculations for guest exchange in sI gas hydrates using molecular dynamics simulations
List:
Chapter One: Gas hydrate
1-1- Gas hydrate. 2
1-2- Gas hydrates over time. 3
1-3- The structure of gas hydrates. 4
1-3-1- sI structure 5
1-3-2- sII structure 6
1-3-3- sH structure. 6
1-3-4- Notes on hydrate structures. 7
1-4- Specifications of the guest molecule. 8
1-5- Gas hydrates in nature. 8
1-6- The importance of gas hydrates. 10
1-6-1- Benefits of gas hydrate. 11
1-6-1-1- Transmission of natural gas. 11
1-6-1-2- source of energy. 12
1-6-1-3- carbon dioxide separation. 12
1-6-1-4- gas hydrates in the food industry. 13
1-6-1-4-1- Concentrating fruit juices 13
1-6-1-4-2- Sweetening of sea water 13
1-6-1-4-3- Separation of enzymes 14
1-6-2- Harms of gas hydrate. 14
1-7- Inhibitors 15
1-7-1- Thermodynamic inhibitors. 15
1-7-2- non-thermodynamic inhibitors. 16
1-7-3- Inhibitory criteria. 16
1-8- absorption. 17
Chapter Two: Molecular Dynamics Simulation
2-1- History of simulation. 20
2-2- Molecular dynamics simulation. 21
2-3- Model systems and interaction potentials. 21
2-4- Introducing the potential model for the interaction between the constituent molecules of the system. 23
2-5- Introducing the potential model for the interaction between the system and the environment. 23
2-5-1- Boundary conditions of rounds. 24
2-5-2- Cutting the potential and contracting the closest image. 25
2-6- Time integration algorithm. 25
2-6-1- Verle's algorithm. 26
2-6-2- Verle's leap algorithm. 27
2-6-3- Velocity Verlet Algorithm. 28
2-7- The first step in molecular dynamics simulation. 29
2-7-1- Determining the initial locations of particles. 29
2-7-2- Determining the initial speeds of particles. 30
2-8- The second step in molecular dynamics simulation. 30
2-9- The third step in molecular dynamics simulation is measuring thermodynamic properties. 31
2-10- The fourth step in molecular dynamics simulation: analysis of results. 32
2-11- Types of sets in molecular dynamics simulation. 32
2-12- Types of errors in molecular dynamics simulation. 33
2-12-1- Statistical errors. 33
2-12-2- Systematic errors. 33
2-13- Limitations of molecular dynamics simulation. 34
2-13-1- Quantum effects. 34
2-13-2- Determination of interaction potentials. 34
Chapter three: Gibbs free energy calculations
3-1- Types of thermodynamic properties. 36
3-1-1- Simple thermodynamic functions. 36
3-1-1-1- Internal energy. 36
3-1-1-2- Pressure. 37
3-1-1-3- average square of force. 37
3-1-2- Thermodynamic functions of the answer. 38
3-1-3- entropy dependent properties. 39
3-1-3-1- Thermodynamic integration. 40
3-1-3-2- experimental particle method. 40
3-1-4- free energy. 41
3-2- Types of methods to calculate the difference of free energy. 43
3-2-1- Thermodynamic disorder. 43 3-2-1-1- Calculation of the free energy difference of nitrogenous bases by thermodynamic disorder method 46
3-2-2- Gradual method. 50
3-2-3- multi-stage trajectory. 50
3-2-4- thermodynamic integration. 53
3-3- Application of free energy difference calculation methods. 53
3-3-1- Thermodynamic cycles. 53
3-3-2- Calculation of absolute free energy. 55
Chapter 4: Gibbs free energy calculations for guest exchange in sI gas hydrate using molecular dynamics simulation
4-1- Thermodynamic integration method. 58
4-2- Research record. 59
4-3- Characteristics of hydrogen sulfide molecule. 67
4-4- Simulation software and input files in this research. 68
4-4-1- Software input files. 68
4-4-1-1- Initial particle structure file (CONFIG) 69
4-4-1-2- Simulation control parameters determination file (CONTROL) 71
4-4-1-3- Preparation of input file (FIELD) 72
4-4-2- Software output files. 73
4-4-2-1- Particles final structure file (REVCON)73
4-4-2-1- The final particle structure file (REVCON) 74
4-4-2-2- The main output file of the simulation (OUTPUT) 74
4-4-2-3- The information file of the simulation process in machine language (REVIVE) 74
4-5- Calculation of the free energy of different substitutions of hydrogen sulfide instead of methane in gas hydrates sI 75
4-6- Calculation of structural and thermodynamic properties. 83
4-6-1- Radial distribution function. 84
4-6-2- Examining the dependence of unit cell volume on temperature 92
4-6-3- Examining the coefficient of linear thermal expansion. 97
4-6-4- Investigating isothermal compressibility coefficient 105
References. 109
Source:
[1] Demirbas, A.;.J.Energy Conversion and Management. 2012, 51, 1562.
[2] Solan, E. D.; Introductory overview: hydrate knowledge development, Am. Mineral. 2004, 89, 1155.
[3] Solan, E. D.; and Koh, C. A.; Clathrate Hydrates of Natural Gases, 3rd. Edition, CRC Press, 2008.
[4] Van der Waals, J. H.; and Platteeuw, J. C.; Clathrate Solution, Adv, Chem. Phy. 1959, 2, 1. [5] Redger, P. M. Mechanisms for Stabilizing Water Clathrates, 1990, 5, 315.
[6] Stakelberg, V. M.; J. Naturwiss. 1949, 36, 359. [7] Jeffry, G.; A. Mcmullan, R.; K. J. Prog. Inorg. Chem. 1967, 8, 43.
[8] Jeffry, G.; A. Inclusion Compounds, Academic Press. 1984.135.
[9] Yakushev, V. International Conference on Gas Hydrate, 4th Ed. Yokohama, 2002. [10] Gudmun dsson, J. S.; Parlaktuna, M.; Khokhare, A. A. J. SPE Production & Facilities. 1994, 69. [11] Chatti, I.; Delahaye, A.; Fournaison. L.; Petitet, J. P. J. Energy Conversion and Management. 2005, 46, 1333.
[12] Javanmardi, J.; Moshfeghian, M. J. Energy Fuels. 1998, 12, 219. [13] Nagahama, N. J. Food Phase Equilibria. 1996, 116, 126.
[14] Solan, E. D. Clathrate Hydrates of Natural Gases. Marcel Decker, Inc. New York. 1998, 59. [15] Chanyu, S.; Wenzhi, L.; Xin, Y.; Fengguang Qing, Y.; Liang, M.; Jun, C.; Bie, L.; Guangjin, G. J. Chemical Engineering. 2011, 19,151. [16] Keith, A. Kvenvolden, U.S. Geological Survey Menlo Park, Gas Hydrates Geological Perspective and Global Change. 1993, 173. [17] Jalili, S., Molecular Dynamics Simulation, Ferdowsi University Press, Mashhad, 1385. [18] Alder, B.J.; Wainwright, T.E. J.Chem. Phys. 1957, 27,1208.
[19] Alder, B.J.; Wainwright, T.E. J.Chem. Phys. 1959, 31, 459.
[20] Rahman, A. Phys. Rev. 1964, 136A, 405.
[21] McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature. 1977, 207, 585.
[22] Goharshadi, A., Mousavi, M., Mousavi, F., Mursali, A., Fundamentals of Molecular Dynamics Simulation, Ferdowsi University Press, Mashhad, 1385.
[23] Norbert, A.; Kurrt, B.; Helmut G.; Kurt, K. John von Nevmann Institute for Computing. 2004, 23,1.
[24] Jarsaw, M. Cornell University, Ithaca, New York, USA Nicholas University, Tourn, Poland, 2010.
[25] Jennifer, L.; Miller and Peter A. Kollman. Solvation Free Energies of the Nucleic Acid Bases. J. Phy.Chem.1996, 100, 8587.
[26] Lu, N. D.; Kofke, A. Accuracy of Free Energy Perturbation Calculation in Molecular Simulation I. J.Chem. Phys. 2001, 114, 7303.
[27] Lu, N. D.; Kofke, A. Accuracy of Free Energy Perturbation Calculation in Molecular Simulation II. J.Chem. Phys. 2001, 115, 6866. [28] Florian, J.; Goodman. M. F. and Warshel. Free Energy Perturbation Calculation of DNA Destabilization by Base Substitution the Effect of Neutral Guanine Thymine, Adenine Cytosine & Adenine difluorotoluene Mismatches.J.Phys.Chem.B. 2000,104, 10092.
[29] Brandsdal, B.O.; and Smalas.O. A. Evaluation of protein association energies by free energy perturbation. Protein Eng. 2000, 13, 239. [30] Straatama, T. P.; and McCammon .A. Computational Alchemy Annu. Rev.Phys.Chem. 1992, 43, 431. [31] Beveridege, D.