Contents & References of Synthesis of gold nanoparticles using willow bark and measurement of cysteine ??by spectroscopy and colorimetry
List:
The history of nanotechnology.. 2
What is nanotechnology? . 2
Nanotechnology is the science of strange properties of materials. 3
Introduction of nanomaterials.. 3
Nanotechnology in nature.. 5
Properties of nanoscale materials.. 7
Effect of particle size on their properties. 11
Types of nanostructures.. 12
Nanoparticle synthesis methods.. 17
Use of nanoparticles.. 17
Metal nanoparticles.. 17
General methods of preparing metal nanoparticles. 18
May's theory of Surface Plasmon Resonance (SPR), surface plasmon resonance. 19
Factors affecting the surface plasmon peak. 21
Properties of gold nanoparticles and their application. 22
Methods of preparation and synthesis of gold nanoparticles. 23
Biological preparation of nanoparticles. 24
Green chemistry.. 24
Evaluation of biological preparation of metal nanoparticles. 25
Green synthesis of gold nanoparticles.. 26
Green synthesis of gold nanoparticles using Tennessee plant extract. 26
Green synthesis of gold nanoparticles using edible mushroom glucan. 26
Green synthesis of gold nanoparticles using a kind of animal protein. 27
Fast green synthesis of gold nanoparticles using rose petal extract at room temperature. 27
1-15-5-
Biological synthesis of gold nanoparticles using olive leaf extract. 27
Using metal nanoparticles as colorimetric sensors. 28
Use of gold nanoparticles.. 28
Detection of interaction between DNA and protein using gold nanoparticles. 28
Heavy metal sensor using gold nanoparticles coated with chitosan. 28
Calimetric detection of Hg2+ in aqueous medium using gold nanoparticles. 29
Cholesterol measurement using nanocomposite containing gold. 29
Hg2+ calorimetric detection using deoxyribonucleic reagent. 29
Ag+ ion calorimetric sensor by gold nanoparticles based on DNA. 30
Calorimetric sensor for identifying cysteine ??using carboxymethyl cellulose agent on gold nanoparticles 30
Optical sensor for measuring heavy metals using gold nanoparticles. 30
A new and high-sensitivity method for identifying Cr3+ in aqueous solutions based on the colorimetry of gold nanoparticle solutions 31
Optical sensor based on 1-aminopyrene binding (1-aminopyrene) using gold nanoparticles to measure picric acid 31
Willow... 32
Botanical specifications. 32
Cysteine.. 32
The importance of measuring cysteine. 35
Cysteine ??measurement methods. 35
The objectives of the present work.. 35
The second chapter/experimental section
The tools used.. 37
The chemicals used. 38
Preparation steps for the synthesis of gold nanoparticles. 39
Preparation of tetrachloroiorate hydrogen salt. 39
Synthesis of gold nanoparticles using willow tree bark. 39
Interpretation of FT-IR spectrum of willow bark extract. 39
Chapter 3/results and discussion of the synthesis of gold nanoparticles.. 42
Proposed mechanism for the synthesis of gold nanoparticles using willow tree bark. 42
Proposed mechanism of cysteine ??effect on gold nanoparticles. 42
Optimizing the amount of willow extract used for the synthesis of gold nanoparticles. 43
Optimization of gold salt in the synthesis of nanoparticles. 44
Optimization of pH .45
Investigating the stability of gold nanoparticles synthesized with willow tree bark extract. 47
Transmission Electron Microscope (TEM) images. 48
Using gold nanoparticles synthesized with willow tree bark extract in brush spectrophotometric measurement of cysteine ??49
Calibration curve for measuring cysteine ??at pH = 5. 49
Investigating the effect of pH in cysteine ??measurement. 50
Investigation of the effect of time. 51
Investigation of the interference effect of other amino acids to measure cysteine. 51
Using gold nanoparticles synthesized with willow tree bark extract in the measurement of cysteine ??by colorimetry (calorimetry) 53
Cysteine ??investigation in a real sample. 54
Conclusion.. 55
Suggested works
September 2013
All copyright is reserved for Urmia University
REFRENCES:
A J. Haes, R P. Van Duyne, Anal Bioanal Chem., 379 (2004) 920–930.
Ravindran, V. Mani, N.Chandrasekaran, A. Mukherjee, Talanta, 85 (2011) 533–540
A.Khaligi, Introduction to Nanoparticles, Scientific-research Journal rzt,num eight,shahre rey,(2010).
Afshar R, Master project, SS&N1 (2007).
Alizadeh A, Khodaei MM, Karami CH, Shamsipur M, sadeghi M, Nano Technology, (2010), 21, 315503.
AR. Ivanov, I.V. Nazimov, L.A. Baratova, Journal of Chromatography A, 870 (2000) 433-442.
Bhushan, Springer handbook of nanotechnology. New York (NY): Spinger–Verlag Berlin Heidelberg New York: 2003
B.Y. Han, J.P. Yuan, E.K.Wang, Analytical Chemistry, 81 (2009) 5569–5573.
Borisenko VE, Ossicini S, What is what in the Nanoworld: A Handbook on Nanoscience and Nanotechnology, Weinheim: Wiley-VCH, (2005).
Noguez, J. Phys. Chem. C., 111(2007) 3806–3819.
Zhao, J. Zhang, J. Song, Anal. Biochem., 297 (2001) 170–176.
Cusma A, Curulli A, Zane D, Materials Science and Engineering C, (2007), 27, 1158-1161.
Dubey SP, Lahtinen M, sillan paa M, Process Biochemistry, (2010), 45, 1065-1077.
Allhoff, P. Lin, and M. Moore, What is nanotechnology and why does it matter: from science to ethics. A John Wiley & Sons, Ltd., Publication: 2010.
G A. Ozine, A C. Arsenault, L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, Cambridge, UK: Royal Society of Chemistry: 2005.
Coa. Nanostructures and Nanomaterials: Synthesis, Properties and Applications, London: Imperial College Press: 2004. Gao D, Xu H, Philbert MA, Kopelman R, Angew Chem Int Ed, (2007), 46, 2224-2227. Zhang, N. Toshim, Applied Catalysis A: General. 447–448 (2012) 81–88.
Hainfield J and Powell R, (2000), 48, 471-479.
http://canada2014.mihanblog.com/post/1464#.
http://mui.ofis.ir
http://www.aftab.ir
http://www.crnano.org/whatis.htm Janssens, T.V.W., Clausen, B.S., Falsig, H., Christensen, C.H., Ipsita K, Kousik M, Syed I, Carbohydrate Polymers, (2013), 91, 518– 528.
J. M, Thomas, Pure Appl. Chem., 60 (1988) 1517–1527.
J. Turkevich, G. Kim, Science, 169 (1970) 873–879.
J. Wang, Li Y. Fang, Ch. Zhi Huang, T. Wu, analytica chimica acta, 626 (2008) 37–43
Jeong B, Kim SW and Bae Yh, Adv.Drug Deliv.Rev, (2002), 54, 37-51.
K. Praveen Kumar, Willi Paul, Chandra P. Sharma, Process Biochemistry 46 (2011) 2007 2013.
Kaushik N. Thakkar, Snehit S. Mhatre, Rasesh Y. Parikh, Nanomedicine: Nanotechnology, Biology, and Medicine, 6 (2010) 257–262.
Kim D, Myoung G, Seon K, Advanced Powder Technology, (2010), 21, 111-118.
Kim Y, Jae HS, RouteBull. Korean, Chem. Soc, (2006), 5, 633.
Krolikowska, A., Kudelski, A., Michota, A., Bukowska, J., (2003); SERS studies on the structure of thioglycolic acid monolayers on silver and gold. J. Surf. Science; 532, 277-232.
Kumar, A., Joshi, H., Pasricha, R., Mandale, A.B., Sastry, M., (2003); Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir; 19, 6277-6282.
L J. Sherry, Sh. Chang, G C. Schatz, R P. Van Duyne, Nano Letter, 5 (2005) 2034–2038.
Li B, Du1 Y, Dong S, Analytica Chimica Acta, (2009), 644, 78–82.
Liu F, Hsieh S, Ko F, Chu A: Colloids and Surfaces. Physicochem,(2008), 231, 31-38.
Lu Y, Yang M, Qu F, Bioelectrochemistry, (2007), 71, 211-216.
M. Bernechea, E. de Jesus, C. Lopez-Mardomingo, P. Terreros, Inorg Chem.