Contents & References of Ethylene polymerization with chromium-based catalyst and investigation of some effective parameters in polymerization
List:
Preface.. 2
1-1- Commercial polyethylene.. 3
1-1-1- History of polyethylene. 3
1-1-2- polyethylene from an economic point of view. 8
1-1-3- Comparison of Phillips catalyst with other catalysts. 10
1-2- Phillips catalyst structure and its mechanism of action. 13
1-3- Development of Phillips catalysts. 14
1-4- Analyzing methods of polymer products. 16
1-4-1- Melt flow speed. 17
1-4-2- The density of the molten state. 17
1-4-3- bulk density. 18
1-4-4- particle size analysis. 19
1-5- The objectives of the current research work. 21
Chapter Two: Experimental Section - Materials and Methods
2-1- Chemicals used. 23
2-1-1-Normal hexane (n-Hexane). 23
2-1-2-1- Hexene. 23
2-1-3-tri n-octyl aluminum solution ((TnOA) in normal hexane. 23
2-1-4-Phillips Catalyst. 23
2-1-5- Ethylene. 24-1-Hydrogen (H2) 24-2-Research reactor 25-2-Melt density determination 2-2 Employment Effect of hydrogen. 2-3-Ethylene copolymerization in the presence of hydrogen. 2-3-Effect of solvent. 30-Chapter 3: The general process of ethylene polymerization. 3-2-Effect TnOA. 3-3- Investigate the effect of 1-hexene. 38- Investigate the effect of hydrogen. 3-5- Investigate the copolymerization of ethylene with 1-hexene. 48
3-6- Examining the effect of solvent replacement. 49
Conclusion.. 50
List of sources.. 51
Source:
. W. Fawcett; R. O. Gibson; M. W. Perrin; J. G. Patton; E. G. Williams. British Patent 1937, 472,590.
[2] H.R. Sailors; J. P. Hogan. J. Macromol. Sci. Chem. A15, 1981, 1377-1402.
[3] H.R. Sailors; J. P. Hogan. Polym. News 7, 1981, 4, 152-167.
[4] J.P. Hogan; D. D. Norwood; C. A. Ayres. J. Appl. Polym. Sci. Appl. Polym. Symp. 36, 1981, 49-60.
[5] J.P. Hogan. The Chemist, 1937, 2, 46. [6] K. W. Doak; A. Schrage. in High Polymers, R. A. V. Raff; K. W. Doak (Eds.), Vol. XX, Part I, Interscience, New York, 1965, p. 351. [7] A. Zletz. U.S. Patent 1954, 2,692,257.
[8] J.P. Hogan; R. L. Banks. U.S. Patent 1958, 2,825,721.
[9] A. Clark; J. P. Hogan; R. L. Banks; W. C. Lanning. Ind. Eng. Chem. 1956, 48, 1152-1155.
[10] K. Ziegler; H. Breil; H. Martin; E. Holzkamp. German Patent 1960, 973,626.
[11] E. F. Peters; A. Zletz; B. L. Evering. Ind. Eng. Chem. 1957, 49, 1879-1882. [12] E. Field; M. Feller. Ind. Eng. Chem. 1957, 49, 1883-1884.
[13] M. Harris; M. Tishler. in Chemistry in the Economy, American Chemical Society, Washington, DC, 1973, pp. 70-71. [14] E. L. D'Ouville. in Polyethylene, 2nd Ed., A. Renfraw; P. Morgan (Eds.), Interscience, New York, 1960, p. 35. [15] Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 14, 2nd Ed., Wiley, New York, 1976, p. 255.
[16] O. O. Juveland; E. F. Peters; J. W. Shepard. A.C.S Polym. Preprints 1969, 10, 263.
[17] J.P. Hogan. in High Polymers, G. E. Ham (Ed.), Vol. 18: Copolymerization, Interscience-Wiley, New York, 1964, pp. 89-113. [18] E. Pritchard; R. M. McGlamery; P. J. Boeke. Mod. Plastics 1959, 37, 132. [19] A. Clark; J. P. Hogan. in Polyethylene, 2nd Ed., A. Renfraw; P. Morgan (Eds.), Interscience, New York, 1960, p. 29. [20] R. G. Rohlfing. U.S. Patent 1965, 3,226,205.
[21] D. D. Norwood. U.S. Patent 1966, 3,248,179.
[22] P. P. McCurdy (Ed.). Chem. and Eng. News, Vol. 47, American Chemical47, American Chemical Society, Washington, DC, 1969, p. 15, Issue No. 17. [23] J. P. Hogan. U.S. Patent 1972, 3,666,736.
[24] A. Wood; D. Rotman. in Phillips Broadens PE Line with Novel Linear Grade, Chem. Week, May 5, 1993, 12.
[25] E. A. Benham; M. P. McDaniel; M. A. Smith; W. M. Whitte; J. D. Ratzlaff. in A Low-density Linear Polyethylene by the Phillips Slurry Process, SPO-93, Scotland International Business Forum on Specialty Polyolefins, Houston, TX, 1993, Sep. 23. [26] M. A. Smith; E. A. Benham; C. M. Didier; M. P. McDaniel; J. D. Ratzlaff; W. M. Whitte. in Novel Low-density Linear Polyethylene (LDLPE) Made Via the Phillips Process, MAACK Conference, Zurich, Switzerland, 1993, Oct. 5.
[27] E. A. Benham; P. D. Smith; M. P. McDaniel. Polym. Eng. and Sci. (SPE) 28, 1988, 22, 1469-1472.
[28] J.P. Hogan; R. L. Banks. U.S. Patent 1983, 4,376,851.
[29] M. P. McDaniel. Adv. Catalysis 1985, 33, 47. [30] H. L. Krauss; H. Stach. Inorg. Nucl. Chem. Lett. 1968, 4, 393.
[31] J.P. Hogan; D. R. Witt. U.S. Patent 1971, 3,622,521.
[32] M. P. McDaniel; M. M. Johnson. U.S. Patent 1982, 4,364,842.
[33] M. P. McDaniel. U.S. Patent 1983, 4,397,765.
[34] B. V. Kral; G. O. Tsien; C. Wu. U.S. Patent 1991, 5,034,364. [35] K. Evertz; R. Saive; G. Funk; P. Koelle; R. Konrad; H. Gropper. U.S. Patent 1994, 5,352,658.
[36] H.J. Mueller; H. G. Braun; B. L. Marczinke; U. Mueller. U.S. Patent 1995, 5,405,819.
[37] W. Rohde. U. S. Patent 2000, 6,147,171.
[38] L. A. McAdams; G. P. Buffone; C. D. Incarvito; A. L. Rheingold; K. H. Theopold. J. Am. Chem. Soc. 2005, 127, 1082. [39] A. V. Shenoy; D. R. Saini. in Melt Flow Index: More Than Just a Quality Control Parameter, Part I: Advances in Polymer Technology, Vol. 6, No. 1, pp. 1-58.
[40] G. R. Blake; K. H. Hartge. in Methods of Soil Analysis, 2nd Ed., A. Klute (Ed.), Part I: Physical and Mineralogical Methods: Agronomy Monograph No. 9, pp. 363-375.