Contents & References of Investigating the activity of platinum-based anodic nanocatalyst for use in direct alcohol fuel cells - methanol, 2-propanol and 2,1-propane DL
List: Chapter 1: Introductions to fuel cells
1-5-1- Polymer fuel cell or proton exchange membrane. 7
1-6- direct alcohol fuel cells. 9
1-7- Fuels used in alcohol fuel cells. 10
1-7-1- methanol as fuel.. 10
1-7-1-1- direct methanol fuel cell. 11
1-7-2-2-propanol.. 15
1-7-2-1- 2-propanol direct fuel cell. 15
1-7-3-Propylene glycol.. 16
1-7-3-1- fuel cell 1 and 2-direct propanediale. 16
1-8- The catalyst used in fuel cell anodes. 17
1-8-1- Improvement of platinum catalyst using different substrates. 18
1-8-1-1-carbon black.. 19
1-9- Study of oxidation of alcohols on platinum-based electrocatalysts. 20
1-9-1- Kinetics of methanol oxidation reaction in DMFC.. 21
1-9-2- Mechanism of methanol oxidation.. 22
1-9-2- Oxidation of 2-propanol and propylene glycol on platinum-based electrocatalysts. 23
1-10- Project goals.. 29
Chapter Two, theoretical foundations
2-1- Introduction.. 31
2-2- Techniques used.. 31
2-3- Voltammetry.. 32
2-3-1- Voltammetry with linear potential scan. 32
2-3-2- Cyclic voltammetry.. 32
2-3-3- Effective factors in electrode reactions during cyclic voltammetry. 33
2-3-4- How to operate in cyclic voltammetry. 34
2-4- TOEFL diagrams.. 35
2-5- Electrochemical impedance spectroscopy method. 36
2-6- Electrode surface characterization.. 48
2-6-1- SEM.. 38
2-6-2- EDS.. 39
Chapter three: Experimental part
3-1- Chemical materials.. 41
3-2- Devices used.. 41
3-3- Electrodes used in voltammetry methods. 44
3-4- Preparation of platinum/carbon catalyst.. 44
3-5-Preparation of catalyst ink.. 44
3-6- Preparation of glass carbon electrode. 45
Chapter Four: Discussion and Conclusion
4-1- Generalities.. 47
4-2- Review of morphology and elemental analysis. 47
4-3-Voltammetry of Pt/C wheels in alkaline solution. 49
4-4- Investigating the activity and stability of Pt/C catalyst in basic methanol solution. 51
4-4-1- Investigating the voltammogram of Pt/C/GC electrode wheels in basic methanol solution. 51
4-4-2- Investigation of EIS curves and chronoamperometry of Pt/C/GC electrode in methanol oxidation. 53
4-5- Investigating the activity and stability of Pt/C catalyst in alkaline solution of 2-propanol. 56
4-5-1- Investigation of cyclic voltammogram of Pt/C electrode in 2-propanol oxidation. 56
4-5-2- Investigation of Nyquist curves and chronoamperometry of Pt/C catalyst in 2-propanol oxidation. 59
4-6- Investigating the activity and stability of Pt/C catalyst in the oxidation of 1,2-propanediol. 60
4-6-1-Cyclic voltammetry of Pt/C/GC electrode in alkaline solution of 1,2-propanediol. 60
4-6-2-Investigating the stability of Pt/C oxidation of 1,2-propanediol. 62
4-7- Investigating the performance of platinum/carbon catalyst in the oxidation of different fuels. 64
4-7-1- Review and comparison of cyclic voltammograms of Pt/C/GC electrode in the oxidation of methanol, 2-propanol, and 1,2-propanediol in alkaline environment 65
4-7-2- Comparison and review of Pt/C linear scan voltammetry graphs in the oxidation of different alcohols. 67
4-7-3- Comparison and review of Pt/C catalyst TOEFL diagrams in alcohol oxidation. 68
4-7-4- Examining the chronoamperometric graphs of the Pt/C/GC electrode in the oxidation of different alcohols. 69
4-7-5- Spectroscopic studies of electrochemical impedance of Pt/C/GC electrode in the oxidation of different alcohols. 72
4-8-Conclusion.. 75
4-9-Suggestions.. 76
4-10-Resources.. 77
English abstract
Source:
[2] Wang, C. Y. (2004). Fundamental models for fuel cell engineering. Chemical reviews, 104(10), 4727-4766.
[3] Ren, Z., Ramasamy, R. P., Cloud-Owen, S. R., Yan, H., Mench, M. M., & Regan, J. M. (2011). Time-course correlation of biofilm properties and electrochemical performance inTime-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells. Bioresource technology, 102(1), 416-421.
[4] Rashidi Ranjbar N, Green energy fuel cells, Arkan Danesh publications, 4834
[5] Nuernberg, G. B., Fajardo, H. V., Mezalira, D. Z., Casarin, T. J., Probst, L. F., & Carre?o, N. L. (2008). Preparation and evaluation of Co/Al 2 O 3 catalysts in the production of hydrogen from thermo-catalytic decomposition of methane: Influence of operating conditions on catalyst performance. Fuel, 87(8), 1698-1704.
[6] Tsang, E. M., Zhang, Z., Shi, Z., Soboleva, T., & Holdcroft, S. (2007). Considerations of macromolecular structure in the design of proton conducting polymer membranes: graft versus diblock polyelectrolytes. Journal of the American Chemical Society, 129(49), 15106-15107.
[7] Ma, Y., Wang, R., Wang, H., Liao, S., Key, J., Linkov, V., & Ji, S. (2013). The effect of PtRuIr nanoparticle crystallinity in electrocatalytic methanol oxidation. Materials, 6(5), 1621-1631.
[8] Park, K. W., Han, D. S., & Sung, Y. E. (2006). PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells. Journal of power sources, 163(1), 82-86.
[9] Du, H., Li, B., Kang, F., Fu, R., & Zeng, Y. (2007). Carbon airgel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells. Carbon, 45(2), 429-435.
[10] Wasmus, S., & Küver, A. (1999). Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry, 461(1), 14-31.
[11] Ley, K. L., Liu, R., Pu, C., Fan, Q., Leyarovska, N., Segre, C., & Smotkin, E. S. (1997). Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys. Journal of the Electrochemical Society, 144(5), 1543-1548.
[12] Gasteiger, H. A., Markovi?, N., Ross, P. N., & Cairns, E. J. (1994). Electro-oxidation of small organic molecules on well-Electrochimica Acta, 39(11), 1825-1832.
[13] Gasteiger, H. A., Markovic, N. M., & Ross Jr, P. N. (1995). H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. The Journal of Physical Chemistry, 99(20), 8290-8301.
[14] Mench, M. M. (2008). Fuel cell engines. John Wiley & Sons.
[15] Liu, Y., Zeng, Y., Liu, R., Wu, H., Wang, G., & Cao, D. (2012). Poisoning of acetone to Pt and Au electrodes for electrooxidation of 2-propanol in alkaline medium. Electrochimica Acta, 76, 174-178.
[16] Mukerjee, S., & Srinivasan, S. (1993). Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. Journal of Electroanalytical Chemistry, 357(1), 201-224.
[17] Shuihua, T. A. N. G., Gongquan, S. U. N., Jing, Q. I., Shiguo, S. U. N., Junsong, G. U. O., Qin, X. I. N., & Haarberg, G. M. (2010). Review of new carbon materials as catalyst supports in direct alcohol fuel cells. Chinese Journal of Catalysis, 31(1), 12-17.
[18] Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., & Wilkinson, D. P. (2006). A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 155(2), 95-110.
[19] Liang, Y., Zhang, H., Zhong, H., Zhu, X., Tian, ??Z., Xu, D., & Yi, B. (2006). Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. Journal of catalysis, 238(2), 468-476.
[20] Niu, L., Li, Q., Wei, F., Wu, S., Liu, P., & Cao, X. (2005). Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: effect of Pt deposition modes. Journal of Electroanalytical Chemistry, 578(2), 331-337.
[21] Bambagioni, V., Bevilacqua, M.