Contents & References of Using a surface model to optimize the process of dilute acid hydrolysis of walnut green skin for glucose production
List:
Title.................................page
Abstract..................................1
Chapter one: Introduction
1-1 What is bioethanol?.3
1-2 The necessity of using ethanol. 4
Chapter two: General
2-1 Introduction... 7
2-2 Theory Combustion. 7
2-2-1 Burning (direct combustion). 7
2-2-2 Bacterial decay. 7
2-2-3 Fermentation. 7....
2-3 Cellulosic waste hydrolysis methods.
2-4 Raw materials used in bioethanol production..
2-4-1 Sugar raw materials.8
2-4-2 Starch raw materials...9
2-4-3 Cellulosic raw materials (lignocellulose)......9
2-4-3-1 cellulose..14
2-7-1 Acidic hydrolysis..............21
2-7-2 Dilute acid hydrolysis..............................
2-7-2-1 Byproducts of dilute acid hydrolysis...........25
2-7-2-1-1 Organic acids..............26
2-7-2-1-2 Phenolic compounds27.................................
2-7-2-1-3 fural compounds. 27
2-7-3 Concentrated Acid Hydrolysis....28
2-7-4 Enzymatic Hydrolysis..........................30
2-8 Physical Pre-processing.............................31
2-8-1 Steam Explosion.31
2-8-2 Ammonia and Carbon Dioxide Explosion.32
2-8-3 Pre-processing Chemical. 32
2-8-4 biological pre-treatment. 34
2-9 Fermentation.............................34
2-10 Recovery of solids and product. 35
Chapter three: Test method
3-1 Materials and liquid used 37.
2-3 Experiments 37.
3-3 Design of test method 37.
1-2-3 effect of concentration 40.
2-2-3 effect of temperature 40.
3-2-3 effect of time 41..
3-4 xylose (XYL) test results.
3-3-3 effect of time 42.
3-4 furfural test results (FER).43
1-4-3 concentration 43.............
-2-4-3 temperature 43.
-3-4-3 time 44.
3-5 results of glucose test (GLU).44
1-5-3 Concentration 44.
2-5-3 Temperature 45.
3-5-3 Time.45.
Chapter Four: Charts and Tables
4-1 Modeling the process:.48
4-2 Examining the conformity of the results obtained from glucose in the proposed models.48
4-2-1 first model. 54
4-2-1-1 checking the validity of the model. 54
Chapter five: conclusion
Conclusion 56............................
Suggestions. 57
References. 58
Source:
1- Aguilar R., Ramirez, J.A., Garrote, G. and Vazquez, M., (2002), Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng., 55, 309-315.
2- Al-Masri M.R., Zarkawi M. (1999). Digestibility and composition of broiler litter, as affected by gamma irradiation. Bioresource Technology 69, 129-132
3- Balat M. (2005), Current alternative engine fuels. Energy Sources 27:569-77.
4- Balat M., (2007), Global biofuel processing and production trends. Energy Explor Exploit;25:195-218
5- Balat M, Balat H, Cahide O, (2008), "Progress in bioethanol processing", Progress in Energy and Combustion Science, 34, 551-573
6- Ballesteros, I, Martinez, Oliva, J.M., Navarro, AA, Carrasco J., Ballesteros, M. (1998). Feasibility of steam explosion pretreatment to enhance enzymatic hydrolysis of municipal solid organic waste In Biomass for Energy and Industry, Proceeding of the International Conference of Wtirzburg. Kopetz
7- Brennan, A., Hoagland, W. and Schell, D. J., (1986). High temperature acid hydrolysis of biomass using an engineering-scale plug flow reactor: results of low solids testing. Biotechnology and Bioengineering Symposium, 17. 8- Belkacemi K; Turcotte G; de Halleux D; Savoie (1998) P Ethanol production from APEX-treated forages and agricultural residues, Appl Biochem.
8- Belkacemi K; Turcotte G; de Halleux D; Savoie (1998) P Ethanol production from APEX-treated forages and agricultural residues, Appl Biochem Biotechnol, 70-72,441-62.
9- Bezerraa M. A., Santelli R. E., Oliveiraa E. P., Leonardo S., 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76: 965–977.
10- Brandberg, T., Sanandaji, N., Gustafsson, L., and Franzen, C. 1. (2005). "Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation," Biotechnol. Prog. 21(4), 1093-101.
11- Broder, J., Barrier, J. W., Lee, K P., Bulls, M.M, (1995) World resource review, 7 (4), 560-569.
12- Carrasco, F. and Roy, C., (1992). Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Science Technology, 26, 189-199.
13- Castro E., D?az M., Cara C., Ruiz E., Romero I., Moya M., (2011). Dilute acid pretreatment of rapeseed straw for fermentable sugar generation. Bioresource Technology 102: 1270–1276.
14- Dale, B. E., Leong, CK, Pham, TK, Esquivel, V.M., Rios, I., Latimer, V.M. (1996). Hydrolysis of lignocellulosics at low enzyme levels: application of the APEX process. Bioresource Technology, 56, 111-116.
15- Demirbas A. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 2005;27:327-37.
16- Demirbas F, Bozbas K, Balat M., 2004, Carbon dioxide emission trends and environmental problems in Turkey. Energy Explor Exploit, 22:355-65.
17- Dien BS, Cotta MA, Jeffries TW. 2003, Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol ; 63:258-66.
18- Diaz M.J., Cara C., Ruiz C., Romero I., Moya, M., Castro E., 2010, Hydrothermal pretreatment of rapeseed straw, Bioresour, Technol. 101,:2428-2435.
19- Esteghlalian, A., Hashimoto, A. G., Fenske, J.J., Penner, M.H. (1997). Modeling and optimization of the dilute sulfuric acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology, 59, 129-136.
20- Faith, W. (1945). "Development of the Scholer process in the United States," Ind. Eng. Chem. 37(1),9-11.
21- Fan, L.T, Gharpuray, M.M, Lee, Y-H. (1987). Enzymatic hydrolysis in Cellulose Hydrolysis, Ed. by Springer - Verlag Berlin Heidelberg
22- Fan, L.T., Lee, YH., and Gharpuray, M.M. (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv. Biochem. Eng. Biotechnol. 23, 158-187.
23- Frederick Jr., S.J. Lien, C.E. Courchene, N.A. DeMartini, A.J. Ragauskas c, K. Iisa, (2008), "Production of ethanol from carbohydrates from loblolly pine", Bioresource Technology 99 5051-5057.