Contents & References of Studying the effective parameters in the synthesis of silver nanoparticles by reverse microemulsion method
List:
Chapter One: Introduction
1
1-1- Silver metal
2
1-1-1- Physical and chemical properties of silver
2
1-1-2 - Important sources and compounds of silver
3
1-1-3- Applications of silver nanoparticles
4
1-1-4- Common compounds in silver nanoparticles
4
1-2- Nanoparticles and synthesis methods
6
1-3- Deposition process
10
1-3-1- Nucleation
12
1-3-2- Growth
15
1-4- Deposition in microemulsions
17
1-4-1- Surfactant
18
1-4-2 - HLB index
1-4-3 - Synthesis of nanoparticles in micro Emulsions
22
1-4-4 - single emulsion and double emulsion method
27
2- Chapter Two: Research background
29
2-1- Objectives
34
3- Chapter Three: Laboratory Studies
36
3-1- Necessary equipment and materials
37
3-2- Method Test
38
3-3- Double emulsion method
40
3-4-Analysis of produced silver nanoparticles
42
3-4-1-Dynamic light scattering device
42
3-4-2-X-ray diffraction analysis
43
3-4-3-scanning electron microscope analysis
44
3-4-4-analysis of transmission electron microscope
45
3-4-5-X-ray photoelectron spectroscopic analysis
47
3-4-6-UV-Vis spectrophotometric analysis
48
4- Chapter four: Modeling
50 4-1-chemical reaction
57
4-5-Optimization of kinetic parameters
59
5- Chapter five: Results and discussion
60
5-1- XRD pattern of synthesized nanoparticles
61
5-2-Effect of surfactants on morphology and particle size distribution
62
5-2-1-UV-Vis spectrophotometric analysis of synthesized samples
65
5-2-2-TEM images of synthesized samples
66
5-2-3-SEM images of synthesized samples
71
5-3-Effect of additives on morphology and particle size distribution
72
5-3-1-TEM images of synthesized samples in the presence of additives
74
5-3-2-SEM images of synthesized samples
78
5-4-Modeling results
5-4-1-Effect of hydrazine concentration on average particle size
79
5-4-1-Effect of silver nitrate concentration on On average particle size
79
5-4-2-optimal model parameters
80
5-5-conclusion
83
5-6-proposals
84
References
86
Appendix 1: UV-Vis spectrophotometric analysis results
95
Appendix 2: XRD analysis results
100
Source:
Adityawarman, D., Precipitation of Barium Sulphate Nanoparticles in Microemulsion: Experiments and Modelling, PhD Dissertation, 2007.
Adityawarman, D., Voigt, A., Veit, P., Sundmacher, K., Precipitation of BaSO4 nanoparticles in non-ionic microemulsions, Chemical Engineering Science, 60 (2005) 3373-3381.
Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M., Colloids Surf. B: Biointerfaces, 28 (2003) 313-318.
Aikens, P.A., Friberg, S.E., Microemulsions in cosmetics, in:, Microemulsions in cosmetics. 3543-3550.
Ayyup, P., Multani, M., Barma, M., Palkar., V.R., Vijayaraghavan, R., Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3, Journal of Physics C: Solid State Physics, 21 (1988) 2229-2245.
Bagwe, R.P., Khilar, K.C., Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT, Langmuir 16 (2000) 905-910.
Bandyopadhyaya, R., Modeling of precipitation in reverse micelles, Ph.D. Thesis, Indian Institute of Science, Bangalore, 2000.
Bandyopadhyaya, R., Kumar, R., Gandhi, K.S., Ramkrishna, D., Modeling of precipitation in reverse micellar systems, Langmuir, 13 (14) (1997) 3610-3620.
Bandyopadhyaya, R., Kumar, R., Gandhi, K.S., Modeling of CaCO3 nanoparticle formation during over basin of lubricating oil additives, Langmuir, 17 (4) (2001) 1015-1029.
Brause R., Moltgen, H., Kleinermanns, K., Laser ablation of silver in different liquids: Optical and nonlinear, appl. Phys. B-lasers opt, 75 (2002) 711-726.
Burban, H., He, M., Cussler, E.L., Organic microporous materials made by bicontinuous microemulsion polymerization, AIChE Journal, 41 (1995) 907-914.
Candau, F., Polymerization in microemulsions, in: Kumar, P. (Ed.), Handbook of Microemulsion Science and Technology, Marcel Dekker Inc, New York, 1999.
Castro, T., Reifenberger, R., Choi, E., Andres, R, P., Size dependent melting temperature of individual nanometer-sized metallic clusters, Physical Review B, 13 (1990) 8548-8553.
Caswell, K.K., Bender, C.M., Murphy, C.J., Seedless, surfactantless wet chemical synthesis of silver nanowires, Nano Letters, 3 (2003) 667-674. Chabra, V., Free, M., Kang, P.K., Truesdail, S.E., Shah, D.O., Microemulsion as an emerging technology, Tenside: Surfactants Detergents, 34 (1997) 156-168.
Chang, C., Fogler, H. S., Kinetics of silica particle formation in non-ionic w/o microemulsions from TEOS, AIChE Journal, 42 (1996) 3153-3163.
Chen, H., Chang, H., Synthesis of nanocrystalline cerium oxide particles by the precipitation method, Ceramics International, 31 (6) (2005) 795-802. Chen, G., Luo, G., Xu, J., Wang, D., Preparation of barium sulfate particles using filtration dispersion precipitation method in O/W system, Powder Technology, 153 (2) (2005) 90-94.
Chen, D.H., Huang, Y.W., Spontaneous formation of Ag nanoparticles in dimethylacetamide, J. Colloid Interface Sci. 255 (2002) 299-302.
Chioui, H., Li, L., Hu, T., Chan, H., Chen, J., Yun, J., Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation, International Journal of Pharmaceutics, 331(1) (2007) 93-98
Choi, S.H., Lee, S.H., Hwang, Y.M., Lee, K.P., Kang, H.D., Ag/SiO2 catalysts prepared via -ray irradiation and their catalytic properties, Radiat. Phys. Chem. 67 (2003) 517-526.
Cozzoli, P.D., Comparelli, R., Fanizza, E., Curri, M.L., Agostiano, A., Laub, D., Nanocomposite in Homogeneous Nonpolar Solution, J. Am. Chem. Soc. 126 (2004) 3868-3874.
Ding, S., Wang, M., Studies on synthesis and mechanism of nano-CaZn2(PO4)2 by chemical precipitation, Dyes and Pigments, 2006.
Dirksen, J.A., Ring, T.A.