Contents & References of Synthesis of silicoaluminophosphate molecular sieves in nano dimensions and its applications (in electrochemistry)
List:
Chapter 1 - Introduction and general research
Overview of silicoaluminophosphate molecular sieve. 2
1-1-1.
Synthesis of molecular sieves. 6
Modification of silicoaluminophosphate molecular sieves. 9
Identification of silicoaluminophosphate molecular sieves. 11
Electron microscope method. 11
X-ray diffraction (XRD) method. 12
FTIR method 12
Introductions to fuel cells. 12
Modified electrodes and electrocatalyst process 15
Types of catalysts used in anodic methanol electrooxidation. 18
Methanol electrocatalysts in acidic environment. 18
1-7-2. Methanol electrocatalysts in alkaline environment 18
Electrochemical measurement. 19
The purpose of the research. 19
Chapter Two - Literature and Research Background
The history of fuel cell. 21
A review of electrocatalytic research. 22
History of molecular sieve materials. 23
Aluminosilicate zeolites and silica molecular sieves. 23
Chapter Three - Research Methodology
Raw materials and laboratory equipment. 30
Raw materials 30
Laboratory equipment. 32
Potentiostat/Galvanostat device. 32
Synthesis and construction. 33
Synthesis of nano silicoaluminophosphate. 33
Electrocatalyst construction. 34
Evaluation method of electrocatalytic performance. 35
Comparison of the corresponding electrode with carbon paste electrode. 36
Chapter Four - Calculations and research findings
Determining the properties of synthetic catalysts. 39
XRD analysis 39
FESEM analysis 40
FTIR analysis 42
Evaluation of electrocatalyst performance. 44
Electrochemical analysis of modified electrodes. 47
Oxidation of methanol electrolyte on the modified electrode surface. 54
Evaluation of chronoamperometry. 58
Evaluation of performance and stability of Ni-SAPO/CPE electrode. 63
Chapter Five - Conclusions and Suggestions
Nano silicoaluminophosphate crystal molecular sieve. 66
Synthesized nanosilicoaluminophosphate modified electrode 66
Suggestions. 67
Appendix - sources and sources. 68
English abstract. 72
Source:
[1] S. Kulpruthipanja, Textbook of zeolites in industrial separation and catalysis, First Ed, Industrial Chemistry, USA (2010).
[2] G. Yang, Y. Wei, S. Xu, J. Chen, J. Li, Z. Liu, J. Yu, R. Xu, Phys. Chem. C 117, 8214 (2013).
[3] N. Nishiyama, M. Kawaguchi, Y. Hirota, D. Van Vu, Y. Egashira, K. Ueyama, Appl. Catal. A 362, 193 (2009).
[4] A. Walcarius, Anal. Chim. Acta, 384, 1 (1999).
[5] B.M. Locke, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan and E.M. Flanigen, US Patent 4440871, (1984).
[6] Z. Liu and J. Liang, Curr. Opin. Solid. ST. M 4, 80 (1999).
[7] R. Shah, J.D. Gale and M.C. Payne. Phase Trans. 61, 67 (1997).
[8] M.M. Mertens, A. Verberckmoes, Patent EP No.1899059A1 (2008).
[9] A. Corma, Chem. Rev. 97, 2373 (1997).
[10] W.O. Haag, R.M. Lago and P.B. Weisz, Nature 309, 589 (1984).
[11] Ch. Baerlocher, D.H. Olsonm, Textbook of Zeolite Frameworks (2007). [12] W.J. Mortier, Textbook of Extra Framework Sites in Zeolites (1982) M. Hosseinpour, Particuology, 452 (2011). [14] M. Mertens, K.G. Strohmaier, US Patent No.6, 773, 688 (2004). Z. Li, J. M. Triguero, J. Yub, A. Corma, Phys. Chem. Phys. [18] V.K. La Mer and R.H. Chem. 72, 1950. [19] W. Xu, J. Li and F. Wu. Soc. Chem. Commun. 10, 755 (1990).
[20] M.H. Kim, H.X. Li and M.E.Davis, Micropor. Mater. 1, 191 (1993).
[21] M. Matsukata, N. Nishiyama and K. Ueyama, Micropor. Mater. 1, 219(1993).
[22] P.R. Hari Prasad Rao, C.A. Leon, K. Ueyama, M. Matsukata, Micropor. Mater. 21, 305 (1998).
[23] Kriston P. Brooksa, Troy A. Semelsbergerb, Kevin L. Simmonsa, Bart van Hasselc, 3, J Power Sources, 268, 950(2014).
[24] J.M. Sieben, A.E. Alvarez, V. Comignani, M.M.E. Duarte, Int J Hydrogen Energ, 39, 11547(2014)
[25] J.B. Raoof, R. Ojani, S.R. Hosseini, J. Power Sources 196, 1855 (2011).
[26] R.M. Abdel Hamed, K.M. EI-Khatib, Int J Hydrogen Energy 35, 2517 (2010).
[27] A. Lima, C. Coutanceau, J.M. Leger, C. Lamy, J. Appl. Electrochem.31, 379 (2001).
[28] R. Ojani, J.B. Raoof, P. Salmany-Afagh, J. Electroanal. Chem. 571, 1766 (2004).
[29] A. Samadi-Maybodi, S.K. Hassani Nejad-Darzi, M.R. Ganjali, H. Ilkhani, J. Solid State Electrochem. 17, 2043 (2013).
[30] J.B. Raoof, R. Ojani, S.R. Hosseini, J. Power Sources 196, 1855 (2011).
[31] Z.B. Wang, G.P. Yin, P.F. Shi, Carbon 44, 133 (2006).
[32] A. Lima, C. Coutanceau, J.M. Leger, C. Lamy, J. Appl. Electrochem. 31, 379 (2001).
[33] J.B. Raoof, N. Azizi, R. Ojani, S. Ghodrati, M. Abrishamkar, F. Chekin, Int. J. Hydrogen Energy 36, 13295 (2011).
[33] D. Pan, J. Chen, W. Tao, L. Nie, S. Yao, Langmuir 22, 5872 (2006).
[34] W. Sugimoto, T. Saida, Y. Takasu, Electrochem. Commun. 8, 411 (2006).
[35] F.S. Hoor, C.N. Tharamani, M.F. Ahmed, S.M. Mayanna, J. Power Sources 167, 18 (2007).
[36] G.Y. Zhao, C.L. Xu, D.J. Guo, H. Li, H.L. Li, J. Power Sources 162, 492 (2006).
[37] J. Prabhuram, T.S. Zhao, Z.X. Liang, R. Chen, Electrochim. Acta 52, 2649 (2007).
[38] B. Habibi, M.H. Pournaghi-Azar, H. Abdolmohammad-Zadeh, H. Razmi, Int. J. Hydrogen Energy 34, 2880 (2009).
[39] K.W. Park, J.H. Choi, K.S. Ahn, V.E. Sung, J. Phys. Chem. B 108, 5989 (2004).
[40] R. Parsons, T.J. Vandernoot, J. Electroanal. Chem. 257, 9 (1988).
[41] K. Nishimura, K. Machida, M. Enyo, J. Electroanal. Chem. 251, 117 (1988).
[42] N.M. Markovic, T.J. Schmidt, B.N. Grgur, H.A. Gasteiger, R.J. Behw, P.N. Ross, J. Phys. Chem. B 103, 8568 (1999).
[43] A. Samadi-Maybodi, S.K. Hassani Nejad-Darzi, M.R. Ganjali, H. Ilkhani, J. Solid State Electrochem. 17, 2043 (2013).
[44] D. Pan, J. Chen, W. Tao, L. Nie, S. Yao, Langmuir 22, 5872 (2006).
[45] J.H. Gross, Fuel Cell Greenpaper, 1, 2 (2002).
[46] W.M. Watts, Text book of Royal Society of London - Catalog of Scientific Papers 1800-1900 (1914).
[47] Z.B. Wang, G.P. Yin, P.F. Shi, Carbon 44, 133 (2006).
[48] A. Lima, C. Coutanceau, J.-M. Leger, C. Lamy, J. Appl. Electrochem. 31,379 (2001).
[49] G. Dryhurst, D.L. McAllister, in: P.T. Kissinger, W.R. Heinemann (Eds), Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, New York, 289 (1984).
[50] C.M.V.B. Almeida, B.F. Giannetti, Electrochem. Commun. 4, 985 (2002).
[51] R.N. Singh, T. Sharma, A. Singh, E. Anindita, D. Mishra, Int. J. Electrochem. Sci. 2 762 (2007).
[52] H.-C. Yu, K.-Z. Fung, T.-C. Guo, W.-L. Chang, Electrochim. Acta 50, 811 (2004).
[53] M. Jafarian, R.B. Moghaddam, M.G. Mahajani, F. Gobal, J. Appl. Electrochem. 36, 913 (2006).
[54] M.A.A. Rahim, R.M.A. Hameed, M.W. Khalil, J. Power Sources 134, 160 (2004).
[55] M. Jafarian, M.G. Mahajani, H. Heli, F. Gobal, H. Khajehsharifi, M.H. Hamedi, Electrochim. Acta 48, 3423 (2003).
[56] H.T. Wang, Z.B. Wang and Y.S. Yan, Chem. Commun. 23, 2333 (2000).
[57] H.T. Wang, L.M. Huang, Z.B. Wang, A. Mitra and Y.S. Yan, Chem. Commun. 15, 1364 (2001).
[58] H.T. Wang, B.A. Holmberg, Y.S. Yan, J. Am. Chem. Soc. 1259, 928, (2003).
[59] Y.J. Lee, S.C. Baek, K.W. June, Appl.