Contents & References of Modeling, simulation and optimization of Jam petrochemical trickle bed reactor for hydrogenation of 1 and 3-butadiene
List:
1-1 Introduction to Jam Petrochemical Complex 2
1-1-1 Cracking Unit 6
1-1-2 Hot Section 8
1-1-3 Compressor 9
1-1-4 Demethane 12
1-1-5 Ethane 13
1-1-6 Separation of three-carbon cut 13
1-1-7 Separation of four-carbon cut 14
1-2 Introduction to Czech bed reactors 18
1-2-1 Comparison with other three-phase reactors 22
2-1 Review of research In the context of modeling the check bed reactor 31
2-2 Review of research conducted in the field of butadiene hydrogenation kinetics 33
3-1 Description of the mathematical model 37
3-1-1 Mass transfer steps and governing assumptions 37
3-1-2 Mass and energy equations 39
3-2 Physical properties 40
3-3 kinetic equations 43
3-3-1 catalyst 45
3-4 numerical solution and optimization method 46
4-1 evaluation of the model 49
4-2 results 51
4-2-1 temperature profile along the reactor 55
4-2-2 Molar flow intensity distribution of components in the liquid phase 56
4-2-3 Distribution of gas phase hydrogen molar flow intensity along the reactor 62
4-2-4 Distribution of physical characteristics along the reactor 63
4-2-5 Examining the effects of changing inlet temperature 65
4-2-6 Changes in conversion percentage and efficiency Influenced by the temperature and intensity of the incoming current 68
5 Conclusion and suggestions 70
Source:
W. Strasser, CFD study of an evaporative trickle bed reactor: Mal-distribution and thermal runaway induced by feed disturbances, Chem. Eng. J. 161 (2010) 257-268.
R. Lange, M. Schubert, W. Dietrich, M. Grunewald, Unsteady-state operation of trickle-bed reactors, Chem. Eng. Sci. 59 (2004) 5355-5361.
S. Schwidder, K. Schnitzlein, A new model for the design and analysis of trickle bed reactors, Chem. Eng. J. 207-208 (2012) 758-765.
M. H. Al-Dahhan, F. Larachi, M. P. Dudukovic, A. Laurent, High-pressure trickle-bed reactors: A review, Ind. Eng. Chem. Res. 36 (1997) 3292-3314.
A. Attou, C. Boyer, G. Ferschneider, Modeling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor, Chem. Eng. Sci. 54 (1999) 785-802.
R.J.G. Lopes, R.M. Quinta-Ferreira, CFD modeling of multiphase flow distribution in trickle beds, Chem. Eng. J. 147 (2009) 342-355.
J. Guo, M. Al-Dahhan, A sequential approach to modeling catalytic reactions in packed-bed reactors, Chem. Eng. Sci. 59 (2004) 2023-2037.
B.V. Babu, K.K.N. Sastry, Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation, Comput. Chem. Eng. 23 (1999) 327-339.
C.N. Satterfield, Trickle-bed reactors, AIChE J. 21 (1975) 209-228.
J. Hanika, V. Jiricny, P. Karnetova, J. kolena, J. Lederer, D. Skala, V. Stanek, V. Tukac, Trickle bed reactor operation under forced liquid feed rate modulation, CI & CEQ 13 (2007) 192-198.
V.V. Ranade, R.V. Chaudhary, P.R. Gunjal, Trickle bed reactors, First ed., Elsevier, Oxford, 2011.
A. Singh, K.K. Pant, K.D.P. Nigam, Catalytic wet oxidation of phenol in a trickle bed reactor, Chem. Eng. J. 103 (2004) 51-57.
V.V. Ranade, R.V. Chaudhary, P.R. Gunjal, Trickle bed reactors, First ed., Elsevier, Oxford, 2011.
G. Biardi, G. Baldi, Three-phase catalytic reactors, Catal. Today 52 (1999) 223-234.
J. Wang, R.G. Anthony, A. Akgerman, Mathematical simulations of the performance of trickle bed and slurry reactors for methanol synthesis, Computers and Chem. Eng. 29 (2005) 2474-2484.
N. Kantarci, F. Borak, K. O. Ulgen, Bubble column reactors, Process Biochemistry 40 (2005) 2263-2283.
F.S. Mederos, J. Ancheyta, J. Chen, Review on criteria to ensure ideal behaviors in trickle-bed reactors, Appl. Catal. A-Gen. 355 (2009) 1-19.
C.N. Satterfield, Trickle-bed reactors, AIChE J. 21 (1975) 209-228.
A. Kundu, K.D.P. Nigam, A.M. Duquenne, H. Delmas, Recent development on hydroprocessing reactors, Rev. Chem. Eng. 19 (2003) 531-605.
P.A.Ramachandran, R.V. Chaudhari, Predicting the performance of three phase catalytic reactors, Chem. Eng. 87 (1980) 74.
C.N. Satterfield, Mass Transfer in Heterogeneous Catalysis, MIT Press, Cambridge, 1970.
H.P. Hofmann, Multiphase catalytic packed-bed reactors, Catal. Rev. Sci. Eng. 17 (1978) 71.
M.P. Dudukovic, F. Larachi, P.L. Mills, Multiphase catalytic reactors: A perspective on current knowledge and future trends, Catal. Rev. Sci. Eng. 44 (2002) 123. V. Specchia, A. Rossini, G. Baldi, distribution and radial spread of liquid in two phase concurrent flows in a packed bed, Quad. Ing. Chim. Ital. 10 (1974) 171.
S.K. Bej, A.K. Dalai, S.K. Maity, Effect of diluent size on the performance of a micro-scale fixed bed multiphase reactor in up flow and down flow modes of operation, Catal. Today 64 (2001) 333.
D.A. Hickman, M. Weidenbach, D.P. Friedhoff, A comparison of a batch recycle reactor and an integral reactor with fines for scale-up of an industrial trickle bed reactor from laboratory data, Chem. Eng. Sci. 59 (2004) 5425.
A.A. Montagna, Y.T. Shah, Backmixing effect in an upflow cocurrent hydrodesulfurization reactor, Chem. Eng. J. 10 (1975) 99.
F.S. Mederos, J. Ancheyta, J. Chen, Review on criteria to ensure ideal behaviors in trickle-bed reactors, Appl. Catal. A-Gen. 355 (2009) 1-19.
S.P. Bressa, J.A. Alves, N.J. Mariani, O.M. Martinez, G.F. Barreto, Analysis of operating variables on the performance of a reactor for total hydrogenation of olefins in a C3-C4 stream, Chem. Eng. J. 92 (2003) 41-54.
A. Dietz, C. Julcour, A.M. Wilhelm, H. Delmas, Selective hydrogenation in trickle-bed reactor. Experimental and modeling including partial wetting, Catal. Today 79-80 (2003) 293-305.
R. Lange, M. Schubert, W. Dietrich, M. Grunewald, Unsteady-state operation of trickle-bed reactors, Chem. Eng. Sci. 59 (2004) 5355-5361.
G. Liu, X. Zhang, L. Wang, S. Zhang, Z. Mia, Unsteady-state operation of trickle-bed reactor for dicyclopentadiene hydrogenation, Chem. Eng. Sci. 63 (2008) 4991-5002.
I. Iliuta, M.C. Iliuta, Sulfur removal in monolithic three-phase reactors: Model and simulation, Sep. Purif. Technol. 92 (2012) 64-76.
M. Rojas, S. Zeppieri, Simulation of an industrial fixed-bed reactor with concurrent downflow for hydrogenation of PYGAS, Catal. Today 220-222 (2013) 237-247.
N.O. Ardiaca, S.P. Bressa, J.A. Alves, O.M. Martinez, G.F. Barreto, Kinetic study of the liquid-phase hydrogenation of 1,3-butadiene and n-butenes on a commercial Pd/Al2O3 catalyst, Stud. Surf. Sci. Catal. 133 (2001) 527-534.
N.O. Ardiaca, S.P. Bressa, J.A. Alves, O.M. Martinez, G.F. Barreto, Experimental procedure for kinetic studies on egg-shell catalysts. The case of liquid-phase hydrogenation of 1,3-butadiene and n-butenes on commercial Pd catalysts, Catal. Today 64 (2001) 205-215.
J.A. Alves, S.P. Bressa, O.M. Martinez, G.F. Barreto, Selective hydrogenation of 1,3-butadiene: improvement of selectivity by using additives, Chem. Eng. J. 99 (2004) 45-51.
D. Seth, A. Sarkar, F.T.T. Ng, G.L. Rempel, Selective hydrogenation of 1,3-butadiene in mixture with isobutene on a Pd/?-alumina catalyst in a semi-batch reactor, Chem. Eng. Sci. 62 (2007) 4544-4557.
J.A. Alves, S.P. Bressa, O.M. Martinez, G.F. Barreto, Kinetic study of the selective catalytic hydrogenation of 1,3-butadiene in a mixture of n-butenes, J. Ind. Eng. Chem. 18 (2012) 1353-1365.
J.M. Smith, H.C. Van Ness, M.M. Abbott, Introduction to chemical engineering thermodynamics, Seventh ed., McGraw Hill, New York, 2005.
D.W. Green, R.H. Perry, Perry's chemical engineers' handbook, eighth ed., McGraw Hill, New York, 2008.
H. Ugur, S. Atalay, T.O. Savasci, Kinetics of liquid phase selective hydrogenation of methylacetylene and propadiene in C3 streams, J. Chem. Eng. Japan, 31 (1998) 178-186.