Contents & References of Using numerical methods without grid in modeling nonlinear waves of water surface caused by wind
List:
Chapter One: Introduction
1-1- Generalities. 2
1-2- Introduction of the current research. 2
Chapter Two: Review of previous researches
2-1- Introduction. 10
2-2- The background of the research done on the wave. 11
2-2-1- Basic models of nonlinear waves. 11
2-2-2- New models of nonlinear waves. 13
2-2-3-Numerical methods without grid in modeling nonlinear waves. 15
2-3- The background of the research done on the numerical method used. 16
2-3-1- Numerical differential quadrature (DQ) method 16
2-3-2- Radial basis functions (RBF) 20
2-3-2-1- Types of radial basis functions. 20
2-3-2-2- Application of radial basis functions in interpolation. 21
2-3-2-3- Application of radial basis functions in solving differential equations. 22
2-3-2-4- RBF-DQ numerical method. 23
2-3-2-5- MQ radial function. 24
Title Page 25
2-3-3-1- density of nodes 26
2-3-3-2- shape parameter. 26
2-3-3-2-1- The influence of the shape parameter on the error 26
2-3-3-2-2- The optimal shape parameter. 29
2-3-3-3-Ranch phenomenon. 32
2-3-3-4- Calculation accuracy, rounding error and status number. 33
2-4- Summary and conclusion. 33
The third chapter: research theory
3-1- Introduction. 36
3-2- Wave theories. 36
3-2-1- Linear wave theory. 36
3-2-2- Nonlinear wave theory. 39
3-2-2-1- Classification of primary theories of nonlinear waves. 39
3-2-2-1-1- Stokes theory. 39
3-2-2-1-2- Cnoidal theory 41
3-2-2-1-3- Boussinesq theory. 42
3-2-2- Numerical simulation of nonlinear wave propagation. 42
3-2-2-1- The geometry of the problem and the definition of the numerical reservoir. 42
3-2-2-2- Governing equation and boundary conditions. 44
3-2-2-2-1- Theory of wave generator. 44
3-2-2-2-2- ascending function. 46
3-2-2-3- Euleri and Lagngaryh Composite (MEL) 48
Page Title
3-2-2-4- Democratic area or artificial beach. 49
3-2-2-5- Using the RBF-DQ method to estimate spatial derivatives. 50
3-2-2-5-1- Selecting the basic function. 50
3-2-2-5-2- Estimation of spatial derivatives by RBF-DQ method. 51
3-2-2-5-3- local RBF-DQ method. 52
3-2-2-5-4- How to apply boundary conditions. 53
3-2-2-5-6- Choosing the right shape parameter. 53
3-2-2-6- Integrating over time. 54
3-2-2-7- Equalizer function. 56
Chapter Four: Results and Discussion on Numerical Experiments
4-1- Introduction. 58
4-2- Numerical examples. 59
4-2-1- First numerical example: Burgers equation. 59
4-2-1-1- Examining factors affecting the accuracy of the method. 60
4-2-1-1-1- Examining the effect of the distance of the nodes on the model. 61
4-2-1-1-2- Examining the effect of the shape parameter on the model. 61
4-2-1-1-3- Examining the influence of shape parameter and distance of nodes simultaneously. 64
4-2-1-1-4- Accuracy of calculations. 65
4-2-1-1-5- Ranch phenomenon. 66
4-2-1-2- Comparison of RBF-DQ and DQ methods. 67
4-2-1-3- Solving the problem using the optimal shape parameter value. 68
4-2-2- Second numerical example: Helmholtz equation. 69
4-2-2-1- Examining factors affecting the accuracy of the method. 70
Title . 70
4-2-2-1-2- Ranch phenomenon. 71
4-2-2-2- Solving the problem using the optimal shape parameter value. 72
4-3- Simulation of wave propagation in a numerical tank. 73
4-3-1- linear wave propagation. 73
4-3-1-1- Investigating the simultaneous effect of the number of nodes and the shape parameter. 75
4-3-1-1-1- The effect of the shape parameter and the number of nodes in the horizontal direction. 78
4-3-1-1-2- The influence of the shape parameter and the number of nodes along the depth. 80
4-3-1-1-3- Examining the simultaneous effect of the number. 80
4-3-1-1-3- Examining the simultaneous influence of the number of nodes in the influence domain and shape parameter. 83
4-3-1-2- Solving the problem using the appropriate shape parameter and comparing the results with the results of the analytical method. 85
4-3-1-3- The effect of the length of the depreciation area. 88
4-3-1-4- Comparing the results with the results of RBF numerical method. 88
4-3-2- Simulation of nonlinear wave propagation in a numerical tank. 89
4-3-2-1- Examining the simultaneous effect of the number of nodes and the shape parameter. 91
4-3-2-1-1- The influence of the shape parameter and the number of nodes in the horizontal direction. 91
4-3-2-1-2- The influence of the shape parameter and the number of nodes along the depth. 94
4-3-2-1-3- Examining the simultaneous influence of the number of nodes in the influence domain and shape parameter. 96
4-3-2-2- Solving the problem using the appropriate shape parameter and comparing the results with the results of the analytical method. 99
4-3-2-3- Comparing the results with the results of the RBF numerical method. 102
4-4- Propagation of the wave created by the wave maker in the laboratory tank. 102
Title
4-4-1- Review of the factors affecting the nonlinearity of the wave. 105
Chapter Five: Conclusions and Suggestions
5-1- Introduction. 109
5-2- Summary and conclusion. 109
5-3- Suggestions. 110
References. 111
Source:
AIRY, G. B. 1845. Tides and waves. Encyclopaedia Metropolitana, 241-396.
BELLMAN, R., CASTI, J. 1971. Differential quadrature and long term integration. J. of mathematical analysis applications, 34, 235-238.
BELLMAN, R., KASHEF, B. G. & CASTI, J. 1972. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. of Comput. Physics, 10, 40-52.
BELLMAN, R., KASHEF, B. G., LEE, E. S. & VASUDEVAN, R. 1975a. Solving hard problems by easy methods: differential and integral quadrature. Comp. & Math. with Appl, 1, 133-143.
BELLMAN, R., KASHEF, B. G., LEE, E. S. & VASUDEVAN, R. 1975b. Differential quadrature and splines. Comp. & Math. with Appl, 1, 371-376.
BELLMAN, R., KASHEF, B. G. & VASUDEVAN, R. 1974. The inverse problem of estimating heart parameters from cardiograms math. Biosci., 19, 221-230.
BELLMAN, R. & ROTH, R. S. 1986. Methods in approximation: techniques for mathematical modeling, Dordrecht, Holland, Redial Publishing Company.
BERT, C. W., JANG, S. K. & STRIZ, A. G. 1988. Two new approximate methods for analyzing free vibration of structural components. AIAA J., 26, 612-618.
BERT, C. W., JANG, S. K. & STRIZ, A. G. 1989. Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature Comput. Mech., 5, 217-226.
BIESEL, F. & SUQUET, F. 1954. Laboratory wave generating apparatus. English Transl. by St. Anthony Falls Hydraulic Laboratory, Report 39.
BOUSSINESQ, J. 1872. Th´eorie des ondes et des remous qui se propagent le long d’uncanal rectangulaire horizontal, en communicating au liquide contenu dans ce canal des vitesses sensibly pareilles de la surface au fond. Math. Pures Appl, 17, 55-108.
BROEZE, J., DAALEN, E. F. G. V. & ZANDBERGEN, P. J. 1993. A three-dimensional panel method for nonlinear free surface waves on vector computers. Comput. Mech., 13, 12-28.
BUHMANN, M. D. 1990. Multivariate cardinal interpolation with radial-basis functions. Constructive Approximation, 6, 225-255.
BUHMANN, M. D. 2003. Radial basis functions: theory and implementations, Cambridge, Cambridge University Press.
BUHMANN, M. D. & DYN, N. 1993. Spectral convergence of multiquadric interpolation. Edinburgh Math. Soc., 36, 319-333.
BUHR, H. & SVENDSEN. 1974. Laboratory generation of waves of constant form, Proc. 14th Conf. on Coastal Eng., ASCE.
CAO, Y. S., SCHULTZ, W. W. & BECK, R. F. 1991. Three-dimensional desingularized boundary integral methods for potential problems. Int. J. Numer.