Contents & References of Improvement of GM-PHD algorithm for multi-target and multi-sensor tracking with the help of bias estimation
List:
Table of contents
Title Page
Abstract 1
Introduction .. 2
Chapter One: General. 3
1-1 statement of the problem. 4
1-2 research objectives. 8
1-3 hypotheses 8
1-4 research background. 8
1-5 research method. 9
Chapter Two: Research background. 10
Introduction .. 11
2-1 Multi-objective tracking model by Bayesian filter. 11
2-2 Gaussian filter. 13
2-2-1 Multi-objective tracking model by PHD filter. 14
2-3 Monte Carlo filter. 22
2-3-1 sequential Monte Carlo. 23
2-4 SMC-PHD filter with error registration 30
2-4-1 Error registration problem investigation 34
2-4-2 SMC-PHD simulation with error registration 36
Chapter three: GM-PHD with the help of bias estimation. 44
Introduction 45
3-1 GM-PHD filter with the help of bias estimation for linear targets. 50
3-1-1 First step: prediction. 50
3-1-2 Second step: update. 51
3-1-3 The third stage: Pruning and integration of Gaussi members. 56
3-1-4 The fourth step: estimating the target position and estimating the sensor bias. 60
3-2 GM-PHD filter with the help of bias estimation for tracking non-linear (maneuvering) targets 61
3-2-1 First step: BFG approximation. 61
3-2-2 The second stage: prediction. 65
3-3 Evaluation criteria of filter types. 66
3-4 PHD error convergence. 68
3-5 Implementation of GM-PHD filter with the help of bias estimation. 73
3-5-1 GM-PHD implementation algorithm with the help of bias estimation for linear targets. 73
3-5-2 GM-PHD implementation algorithm with the help of bias estimation for non-linear targets. 74
Chapter Four: Simulation. 75
Introduction 76
4-1 Simulation 1. 76
4-2 Simulation 2. 85
Chapter Five: Conclusion and Suggestions 94
5-1 Conclusion. 95
5-2 Suggestions 98
Resources. 99
English abstract. 1
Source:
English sources:
- Alspach, D. (1970). A Bayesian approximation technique for estimation and control of discrete time systems. Univ. Calif.
- Anderson, B., & Moore, J. (1979). Optimal Filtering. Englewood Cliffs.
- Beddey, A., & van Lieshout, M. (1992). ICM for object recognition. Springer.
- Clark, D., & Bell, J. (Jul.2006). Convergence results for the particle PHD filter. IEEE Trans. Signal Process, 54(7), 2652–2661.
- Clark, D., & Bell, J. (Oct. 2005). Bayesian multiple target tracking in forward scan sonar images using the PHD filter. Proc. Inst. Elect. Eng.—Radar, Sonar, Navigation, 152(5), 327–334.
- Clark, D., & Vo, B. (2007). Convergence analysis of the Gaussian mixture PHD filter. IEEE Transactions on Signal Processing, 55(4), 1204–1211.
- Clark, D., Panta, K., & Vo, B. (Jul 2006). The GM-PHD filter multiple target tracker. Information Fusion. Florence, Italy.
- Clark, D., Ruiz, I., Petillot, Y., & Bell, J. (2007). Particle PHD filter multiple target tracking in sonar image. IEEE Trans. Aerosp. Electron. Syst, 43(1), 409–416.
- Clark, D., Vo, B., & Bell, J. (Apr 2006). GM-PHD filter multi-target tracking in sonar images. presented at the SPIE Defense Security Symp, 17–21.
- Dana, M. (MA 1990). Registration: a prerequisite for multiple sensor tracking. Multitarget multisensor tracking. In advanced applications (pp. 155–185). Norwood: ArtechHouse Publishers,.
- Doucet, A., De Freitas, N., & Gordon, N. (May 2001). Sequential Monte Carlo Methods in Practice. Springer Springer-Verlag.
- El-Fallah, A., & Mahler, R. (May 2011). Bayesian unified registration and tracking. Proceedings of the SPIE Conference on Signal Processing, Sensor Fusion and Target Recognition, 8050, 1–11.
- Friedland, B. (1969). Treatment of bias in recursive filtering. IEEE Transactions on Automatic Control 14 (4), 14(4), 359–367.
- Geyer, C. (1999). Likelihood inference for spatial point processes. Stochastic GeometryStochastic Geometry, probability and computation, 79-140.
- Goodman, I., Mahler, R., & Nguyen, H. (1997). Mathematics of Data Fusion. Kluwer Academic Publishers.
- Grimmett, G., & Stirzaker, D. (2011). One Thousand Exercises in Probability. London: Oxford University Press.
- Hernandez, M., Ristic, B., Farina, A., & Sathyan, T. (2008). Performance measure for Markovian switching systems using best fitting Gaussian distributions. IEEE Transactions on Aerospace and Electronic Systems, 44 (2), 724–747.
- Herrero, J., Portas, J., & Corredera, J. (2007). On-line multi-sensor registration for data fusion on airport surface. IEEE Trans. Aerosp. Electron. Syst, 43(1), 356–370.
- Ignagni, M. (1981). An alternate derivation and extension of Friedland's two-stage Kalman estimator. IEEE Transactions on Automatic Control, 26(3), 746–750.
- Ikoma, N., Uchino, T., & Maeda, T. (Aug 2004). Tracking of feature points in image sequence by SMC implementation of PHD filter. in Soc. Instrument and Control Engineers (SICE) 2004 Annu. Conf, 2, 1696–1701.
- Johansen, A., Singh, S., Doucet, A., & -N, B. (Jun. 2006). Convergence of the SMC implementation of the PHD filter. Method. Comput. Appl. Probab, 8(2), 265–291.
- Julier, S., & Uhlmann, J. (1996). A general method for approximating nonlinear transformations of probability distributions. RRG, Eng. Sci. Dept., Univ. Oxford, Oxford, U.K.,.
- Julier, S., & Uhlmann, J. (1997). A new extension of the Kalman filter to nonlinear systems. in Int. Symp. Aerosp./Defense Sensing, Simultaneous Controls, Orlando, FL.
- Li, X., & Jilkov, V. (April 2000). A survey of maneuvering target tracking: dynamic models. Proc. 2000 SPIE Conf. on Signal and Data Processing of Small Targets, 4048, 212–235.
- Lian, F., Han, C., Liu, W., & Chen, H. (2011). Joint spatial registration of a multi-target tracking using an extended probability hypothesis density filter. IET Radar, Sonar and Navigation, 5(4), 441–448.
- Lo, H. (1972). Finite-dimensional sensor orbits and optimal non-linear filtering. IEEE Trans. Inf. Theory, IT-18(5), 583–588.
- Ma, W., Singh, S., & Vo, B. (2004). Tracking multiple speakers with random sets. Proceedings of the International Conference on Acoustics, Speech and Signal Processing, (pp. 357–360). Montreal, Canada.
- Mabler, R. (June 2000). A theoretical foundation for the Stein-Wmter Probability Hypothesis Density (PHD) multi-target tracking approach. Pmc.2002 MSS Nat? Symp. on Sensor and Data Fusion, 1. San Antonio TX.
- Maggio, E., Taj, M., & Cavallaro, A. (2008). Efficient multitarget visual tracking using random finite sets. IEEE Trans. Circuits Syst. Video Technol, 18(8), 1016–1027.
- Mahler, R. (1994). Global integrated data fusion. Proc. 7th Nat. Symp. on Sensor Fusion, 1, 187-199.
- Mahler, R. (2000). Approximate multisensor-multitarget joint detection, tracking and identification using a first order multitarget moment statistic. IEEE lhm. AES.
- Mahler, R. (2003). Multi-target Bayes filtering via first-order multi-target moments. IEEE Trans. Aerosp. Electron. Syst, 39(4), 1152–1178.
- Mahler, R. (2010). Approximate multisensor CPHD and PHD filters. Proceedings of the 13th International Conference on Information Fusion, 1-8.
- Mahler, R. (MA, 2007). Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood,.
- Mahler, R. (March 2000). An Introduction to Multisource-Multitarget Statistics and Applications. Lockheed Martin Technical Monograph.
- Nagappa, S., & Clark, D. (May 2011). On the ordering of the sensors in the iterated-probability hypothesis density (PHD) filter. Proceedings of the SPIE Conference on Signal Processing, Sensor Fusion and Target Recognition, 8050, 1-6.
- Okello, N., & Ristic, B. (2003). Maximum likelihood registration for multiple dissimilar sensors.