Contents & References of Analysis, simulation and construction of optimized microstrip antenna with metamaterial roll and use of PSO particle aggregation optimization algorithm
List:
Page Title
Chapter One: Introduction
1-1-Microstrip antenna. 2
1-1-1-wave on microstrip antenna. 3
-2-1-1 Surface waves. 3
-3-1-1 non-dense waves. 5
-4-1-1 Guided waves 5
1-1-5- Specification of microstrip antenna. 6
-2-1 Metamaterials. 6
1-2-1- ENG materials. 10
1-2-2- MNG materials. 11
1-2-3- DNG materials. 13
1-2-4- Use of metamaterials. 16
1-3- particle accumulation optimization algorithm. 17
1-4-Objectives of Project 21
Chapter Two: General Topics of Microstrip Antenna
2-1- Introduction. 23
2-2- Advantages and disadvantages. 25
2-3- feeding methods. 26
2-3-1- Microstrip line feeding method. 26
2-3-2- Coaxial cable 27
2-3-3- Feeding by the aperture coupling method. 28
2-3-4- Feeding by electromagnetic coupling method. 29
2-4- Microstrip antenna analysis methods. 30
2-4-1- transmission line model. 31
2-4-2- Resonance cavity model. 34
2-5- radiation pattern. 37
2-6- Radiation efficiency. 39
2-7- Bandwidth. 41
2-8- Input impedance. 42
Chapter three: general topics of metamaterials
3-1- Introduction. 45
3-2- Wave propagation in left-round materials. 46
3-3- Energy density and group speed 48
3-4- Refractive index. 50
3-5- other properties of metamaterials. 51
3-5-1- Reverse Doppler effect. 51
3-5-2- Return Cherenkov radiation. 52
3-6- Transmission and reflection coefficients. 54
3-6-1- Calculation of transmission and reflection coefficients in the common face. 54
3-6-2- Calculation of transmission and reflection coefficients of metamaterial blade. 56
3-7- Application of metamaterials in antenna. 57
3-7-1- Use of metamaterials as microstrip antenna roll. 58
Chapter 4: General issues of extraction of environmental parameters of metamaterials
4-1- Introduction. 66
4-2- Smith method. 66
4-3- Ziolkowski method 69
4-4- Nicolson Ross Weir method. 71
4-5- Application of environmental parameters extraction methods. 73
4-5-1 narrow wire. 73
4-5-2- SRR. 75
4-5-3 Combination of narrow wire and SRR. 77
Chapter Five: General Discussions of Particle Aggregation Optimization Algorithm
5-1- Introduction. 83
5-2- Structure of particle aggregation algorithm. 84
5-3- Determining the parameters of particle accumulation optimization algorithm. 90
5-4- Boundary conditions. 96
5-5- Application. 99
Chapter Six: Modeling
6-1- Introduction. 103
6-2- The structure of the first metamaterial. 105
6-3- The structure of the second metamaterial. 109
6-4- The structure of the third metamaterial. 114
6-5- The structure of the fourth metamaterial. 118
Chapter Seven: Results
7-1- Introduction. 124
7-2- Microstrip antenna design using the first metamaterial structure. 125
3-7- Microstrip antenna design using the second metamaterial structure. 129
7-4- Microstrip antenna design using third metamaterial structure. 133
7-5- Microstrip antenna design using the fourth metamaterial structure. 137
6-7- Fabrication of microstrip antenna using the first metamaterial structure. 141
Chapter Eight: Conclusions and Suggestions
8-1- Results. 146
8-2- Suggestions. 147
References. 148
Source:
Alu, A., Bilotti, F., Engheta, N., and Vegni, L. (2007). "Subwavelength, compact, resonant patch antennas loaded with metamaterials", IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, : 13–25.
Alu, A., Bilotti, F., Engheta, N., and Vegni, L. (2007). "Subwavelength planar leaky-wave components with metamaterial bilayers", IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, : 882–891.
Andryieuski, A., Malureanu, R., Lavrinenko, A. V. (2009). "Wave propagation retrieval method for metamaterials: unambiguous restoration of effective parameters", Phys. Rev. B, Vol. 80, No. 19, : 193101-193106.
Attia, H., and Rahahi, O. M. (2008). "EBG Superstrate For Gain and Bandwidth Enhancement Of Microstrip Array Antennas", In Proceeding of IEEE AP-SInt.Symp. AntennaPropagate, San Diego,
Balanis, C. A. (1997). "Antenna Theory, Analysis and Design", John Wiley & Sons, ISBN: 0-471-59268-4.
Behera, S. K. (2005). "Novel Tuned Rectangular Patch Antenna As a Load for Phase Power Combining", P h. D Thesis, Jadavpur University, Kolkata, India.
Bilotti, F., Alu, A., and Vegni, L. (2008). "Design of miniaturized metamaterial patch antennas with mu-negative loading", IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, : 1640–1647.
Belov, P. A., Hao, Y., and Sudhakaran, S. (2006). "Sub wavelength microwave imaging using an array of parallel conducting wires as a lens", Phys. Rev. B, Vol. 73, No. 3, : 33108-33112.
Caloz, C., and Itoh, T. (2003) “Microwave applications of novel metamaterials,” In Proc. Int. Electromagnetics in Advanced Applications Conf., Turin, Italy.
Caloz, C., and Itoh, T. (2005) “Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications.” John Wiley & Sons, Inc., ISBN: 0-471-60146-3.
Carlisle, A., and Doizier, G. (2001). “An off-the-shelf PSO”, In Proc Workshop Particle Swarm Optimization, Indianapolis, IN, USA.
Chainmool, S., Chung, K. L., and Akkaraekthalin, P. (2009). "A 2.45GHz WLAN High Gain Antenna Using A Metamaterial Reflecting Surface", Intern Symp., on Antennas and Propagation.
Chaimool, S., Chung, K. L., and Akkaraekthalin, P. (2010). "Simultaneous gain and bandwidth enhancement of a single feed circularly polarized microstrip patch antenna using a metamaterial trial reflective surface", Progress In Electromagnetics Research B, Vol.22, No. 5, : 23-37.
Chen, X., Grzegorczyk, T. M. Wu, B. I., Pacheco Jr, J., and Kong, J. A. (2004) "Robust method to retrieve the constitutive effective parameters of metamaterials", Phys. Rev. B, Vol. 70, No. 1, : 16608-16612.
Clerc, M., and Kennedy, J. (2002). "The particle swarm-explosion, stability, and convergence in a multidimensional complex space", IEEE Trans. Evol. Comput. Vol. 6, No. 1, :58-73.
Collin, R. E. (1990). "Field Theory of Guided Waves" IEEE Press, ISBN: 0-87942-237-0.
Eberhart, R. C., and Shi, Y. (1998). "Evolving artificial neural networks", In Proc. 1998 Int. Conf. Neural Networks and Brain, Beijing, P.R.C.
Eberhart, R. C., and Shi, Y. (2001). "Particle swarm optimization: developments, applications and resources", In Proc. 2001 Congr. Evolutionary Computation, USA.
Eleftheriades, G. G. V., Iyer, A. K., and Kremer, P. C. (2002). "Planar negative refractive index media using periodically L-C loaded transmission lines", IEEE Trans. Microwave. Theory Tech. , Vol. 50, No. 12, : 2702–2712.
Engheta, N., and Ziolkowski, R. W. (2006). "Metamaterials physics and engineering explorations", John Wiley & Sons, Inc., ISBN: 0-471-76102-0.
Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J., Koschny, T., and Soukoulis C.M. (2005). "Magnetic Metamaterials at Telecommunication and Visible Frequencies", Physical Review Letter, Vol.95, No.20, : 1901-1905.
Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., and Vincent, P. (2002). "A metamaterial for directive emission", Physical Review Letters, Vol. 89, No. 21, : 213902, 2002.
Freire, M. J., and Marque´s, R. (2005). "Planar magneto inductive lens for three-dimensional subwavelength imaging", Appl. Phys. Lett., Vol. 86, No.18, : 182505-182507.
Foroozesh, A., and Shafai, L. (2010). "Investigation Into The Effects of The Patch Type FSS Superstrateon The High Gain Cavity Resonance Antenna Design", IEEETrans, Antenna Propagate, Vol.58, No.2, : 258-270.
Gardiol, F. E. (1995) "Broad band Patch Antennas", Artech House, Inc.