Contents & References of Estimation of total bottom sediment load in waterways based on Support Vector Regression (SVR) model and Particle Community Optimization (PSO) algorithm
List:
List of contents
List of images
List of tables. 1-Introduction 1
1-1-Problem design. 1
1-2-Necessity of conducting research 2
1-3-Research objectives 4
2- Theoretical foundations of research 7
2-1-Generalities 7
2-2-Einstein's approach. 8
2-3-Akers and White approach 11
2-4-Engelund and Hansen approach. 12
2-5-Graph approach 14
2-6-Young's approach... 14
3-Review of conducted research 17
3-1-Research conducted in the field of flood forecasting. 17
3-2-Research conducted in the field of sediment estimation. . 24
4-Materials and methods 26
4-1-Estimation. 26
4-2-Machine learning. 28
4-3-Support vector machines (SVM) 29
4-3-1-Classification of support vector machine. 30
4-3-1-1- Linear classification of noisy data . 33
4-3-1-2- Mode when the data is not separated linearly. 35
4-3-1-2-1- Mapping patterns to feature space.
4-3-1-2-2- Common kernel functions. 42
4-3-2- Support vector regression (SVR) 43
4-3-2-1- Linear regression 44
4-3-2-2- Non-linear regression 47
4-3-3- Least squares machine Support vector 52
4-4-bird community algorithm. 53
4-4-1-stages of bird community algorithm. 57
4-4-2- Application of bird community algorithm. 58
4-4-3-Advantages of particle society algorithm. 58
4-4-4-disadvantages of the bird community algorithm. 59 4-5- The data used 59 4-6- Dimensional analysis 63 4-7- Software and coding 65 5- Discussion and results. 68
5-1-First approach, least squares support vector machine 68
5-2-Secondary approach, particle community optimization algorithm (PSO) 85
5-3-Sensitivity analysis. 90
6-Conclusion and suggestions 95
6-1-Conclusion 95
6-2-Suggestions 97
7-List of references 98
Source:
6-
Ackers, P., & White, W. (1973). Sediment transport: new approach and analysis. Journal of the Hydraulic Division, ASCE, 99(HY11), 2041-2060.
Asefa, T., Kemblowski, M., Mckee, M., & Khalil, A. (2006). Multi-time scale stream flow predictions: the support vector machines approach. J. of Hydrology, 318(1-4), 7-16. doi: 10.1016/j.jhydrol.2005.06.001
Azamathullah, H., Ghani, A., Chang, C., Abu Hasan, Z., & Zakaria, N. (2010). Machine Learning Approach to Predict Sediment Load. Clean Soil Air Water, 38(10), 969-976. doi: 10.1002/clen.201000068
Cimen, M. (2006). Estimation of daily suspended sediments using support vector machines. Hydrological Sciences Journal, 53(3), 656-666. doi: 10.1623/hysj.53.3.656
Duan, Q., Sorooshian, S., & Gupta, V. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. of Hydrology, 158, 265-284.
Einstein, H. (1950). The bed load function for sediment transportation in open channel flows. Technical Bulletin no. 1026: U.S. Department of Agriculture, Soil Conservation Service.
Engelund, F., & Hansen, E. (1972). A monograph on sediment transport in alluvial streams. Copenhagen: Teknisk Forlag.
Garrote, L., & Bras, R. (1995). A distributed model for real-time flood forecasting using digital elevation models. J. of Hydrology, 167(1-4), 279-306. doi: 10.1016/0022-1694(94)02592Y
Graf, W. (1971). Hydraulics of sediment transport. New York: McGrow-Hill.
Hager, W., & Oliveto, G. (2002). Shields' entrainment criterion in bridge hydraulics. Journal of Hydraulic Engineering, ASCE, 128(5), 538-542. doi: 10.1061/(ASCE)0733-9429(2002)128:5(538)
Han, D., Chan, L., & Zhu, N. (2007). Flood forecasting using support vector machines. J. of Hydroinformatics, 9(4), 267-276. doi: 10.2166/hydro.2007.027
Huang, Z., Zhou, J., Song, L., Lu, Y., & Zhang, Y. (2010).Flood disaster loss comprehensive evaluation model based on optimization support vector machine. Expert Systems with Applications, 37(5), 3810–3814.
Kennedy J., E. R. (2001). Particle Swarm Optimization. San Francisco, USA: Academic Press.
Kisi, O., & Cimen, M. (2011). Precipitation forecasting by using wavelet- Support vector machine conjunction model. Eng. Appl. of AI, 25(4), 783-792. doi:doi:10.1016/ j.engappai.2011.11.003
Misra, D., Oommen, T., Agarwal, A., Mishra, S., & Thompson, A. (2009). Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosystems Engineering, 103(4), 527-535. doi: 10.1016/j.biosystemseng.2009.04.017
Noori, R., Karbassi, A., Moghaddamnia, A., Zokaei-Ashtiani, M., Farokhnia, A., & ghafari gousheh, M. (2011). Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. of Hydrology, 401(3-4), 177-189. doi: 10.1016/j.jhydrol.2011.02.021
Owen, P. (1964). Saltation of uniform grains in air. Journal of Fluid Mechanics, 20, 225-242.
Prasad, V. (1991). Velocity, shear and friction factor studies in rough rectangular open channels for super critical flow. Bangalore: Thesis (Phd) Indian Institute of Science.
Rao, A., & Sreenivasulu, G. (2006). Design of plane sediment bed channels at critical condition. ISH Journal of Hydraulic Engineering, 12(2), 94-117. doi: 10.1080/09715010.2006.10514834
Shuquan, L., & Lijun, F. (2007). Forecasting the Runoff Using Least Square Support Vector Machine. International Conference on Agricultural Engineering.
Sivapragasam, C., Liong, S.-Y., & Pasha, M. (2001). Rainfall and runoff forecasting with SSA-SVM approach. J. of Hydroinformatics, 3(3), 141-152.
Soulsby R. L. (1997). Dynamics of marine sands. London: Thomas Telford.
Vapnik, V. N. (1995). The nature of statistical learning theory. New York, USA: Springer.
Vapnik, V. N. (1998). Statistical Learning Theory. New York, USA: Springer.
Williams, G. (1970). Flume width and water depth effects in sediment transport experiments. US Geological Survey, Professional Paper, 562-H, 37 p.
Yang C. T. (1979). Unit Stream Power Equations for Total Load. J. of Hydrology, 40, 123-138.
Yang, C. (1972). Unit Stream Power and Sediment Transport. Journal of the Hydraulic Division, ASCE, 98(HY10), 1805-1826.
Yilin, J., Cheng, C.-T., & Chau, K.-W. (2006). Using Support Vector machines for long-term discharge prediction. Journal of Hydrological Sciences, 51(4), 599-612. doi: 10.1623/hysj.51.4.599
Yu, P., Chen, S., & Chang, I. (2006). Support vector regression for real-time flood stage forecasting. J. of Hydrology, 328(3-4), 704-716. doi: 10.1016/j.jhydrol.2006.01.021
Yu, X., & Liong, S. (2006). Forecasting of hydrologic time series with ridge regression in feature space. J. of Hydrology, 332(3-4), 290-302. doi:10.1016/j.jhydrol.2006.07.003
Asmikhani M., Safavi H. (1389). Integrated management of surface and underground water resources using support vector machine methods and genetic algorithm. The 5th National Congress of Civil Engineering. Mashhad: Ferdowsi University of Mashhad.
Nouri R., Khakpour A. (1390). Monthly flow forecasting using support vector machine based on principal component analysis. Journal of Water and Wastewater. 118-123.