Contents & References of Achieving quality of service in wireless sensor networks using cellular learning automata
List:
Abstract 9
1- Introduction. 10
1-1- Wireless sensor networks. 10
1-1-1- Issues in wireless sensor networks. 13
1-1-2- Environment coverage in wireless sensor networks. 15
1-1-3- Clustering in wireless sensor networks. 16
1-1-4- Aggregation of data in sensor networks. 17
1-2- Quality of service in wireless sensor networks. 18
1-2-1- Service quality in traditional data networks. 20
1-2-2- Quality of service in wireless sensor networks. 26
1-3- Learning automata. 29
1-3-1- Learning automata. 31
1-3-2- Behavior criteria of learning automata. 34
1-3-3- Learning algorithms. 35
1-3-4- Learning automata with variable actions. 39
1-4- Cellular learning automata. 40
1-4-1- Cellular automata. 40
1-4-2- Cellular learning automata (CLA). 44
1-4-3- Irregular cellular learning automata (ICLA). 47
1-5- Objectives of the thesis and its structure. 48
2- Environment coverage in wireless sensor networks using cellular learning automata 50
2-1- Introduction 50
2-1-1- Different forms of design. 51
2-2- Classification of coverage issues in sensor networks. 52
2-2-1- Area coverage. 53
2-2-2- Point coverage 56
2-2-3- Border coverage 57
2-3- CCP coverage method. 59
2-3-1- Assumptions of the problem. 59
2-3-2- Description of the method 59
2-4- Solving the covering problem (k-covering) using learning automata. 61
2-4-1- Assumptions and problem model. 63
2-4-2- The method of detecting the extension of the sensor node. 64
2-4-3- Simulation 72
2-5- Summary 79
3- Clustering in wireless sensor networks using cellular learning automata 80
3-1- Introduction 80
3-2- Done. 83
3-2-1- LEACH clustering protocol. 85
3-2-2- HEED clustering protocol. 88
3-3- Clustering in wireless sensor networks using cellular learning automata. 93
3-3-1- Proposed clustering method. 94
3-3-2- Simulation 102
3-4- Summarization 107
4- Aggregation of data in sensor networks using learning automata. 108
4-1- Introduction 108
4-2- Done works. 109
4-3- Gathering data in sensor networks using learning automata. 112
4-3-1- Statement of the problem and its assumptions. 113
4-3-2- Description of the proposed method. 115
4-4-Simulation 119
4-4-1- The first test 122
4-4-2- The second test 122
4-4-3- The third test 123
4-5- Summary 125
5- Conclusion. 126
6- Appendix I: wireless sensor networks. 127
6-1- The history of sensor networks. 127
6-2- The structure of each sensor node. 128
6-2-1- Internal components of a sensor node. 128
6-2-2- Hardware limitations of a sensor node. 130
6-3- Protocol stack 131
6-4- Advantages of wireless sensor networks. 132
6-5- Applications of wireless sensor networks. 134
7- Appendix II: Cellular learning automata. 138
7-1- The history of learning automata. 138
7-2- Behavior criteria of learning automata. 139
7-3- Learning automata with variable actions. 141
7-4- A posteriori learning automata. 142
7-5- Cellular learning automata (CLA). 150
7-6- Open cellular learning automata (OCLA). 151
7-7- Asynchronous cellular learning automata (ACLA). 152 8- The third appendix: Description of J-Sim software and implementation of the proposed algorithms with it 155 8-1 Introduction 155 8-2 J-Sim simulator 158 8-2-1 Simulation of wireless sensor networks using J-sim. 158
8-2-2- Installation and implementation 162
8-3- Implementation of the proposed clustering algorithm. 163
8-4- Implementing the proposed coverage algorithm. 185
8-5- Implementation of the proposed aggregation algorithm. 190
9- Glossary. 195
References.199
Source:
[1] Akyildiz I. F., Su W., Sankarasubramaniam Y. and Cayircl E., "A survey on sensor networks", in: Proceedings of the IEEE Communication Magazine, Vol. 40, pp. 102-114, August 2002.
[2] Ilyas M. and Mahgoub I., "Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems", in: Proceedings of the CRC Press, London, Washington, D.C., 2005.
[3] Kahn J.M., Katz R.H. and Pister K.S.J., "Next century challenges: mobile networking for smart dust", in: Proceedings of the ACM MobiCom 99, Washington, USA, pp. 271–278,1999.
[4] D. Chen and K. Varshney, “QoS Support in Wireless Sensor Networks: A Survey” Department of EECS, Syracuse University Syracuse, NY, U.S.A 13244, 2004
[5] A. Ganz, Z. Ganz, and K. Wongthavarawat, Multimedia Wireless Networks: Technologies, Standards, and QoS, Prentice Hall, Upper SaddleRiver, NJ, 2004.
[6] E. Crawley et al., “A Framework for QoS-Based Routing in the Internet,” RFC 2386, http://www.ietf.org/rfc/rfc.2386.txt, Aug. 1998. [7] Z. Demetrios, “A Glance at Quality of Services in Mobile Ad-Hoc Networks, ” http://www.cs.ucr.edu/csyiazti/cs260.html, November 2001.
[8] D. Zeinalipour, S. Aristeidou, S. Kazeli, “IP Quality of Services (in Greek), ” http://www.cs.ucr.edu/ csyiazti/downloads/papers/ipqos/ papers/ip-qos.pdf, 1999
[9] K. Wui, J. Harms, “QoS Support in Mobile Ad Hoc Networks,” Crossing Boundaries – an interdisciplinary Journal, Vol 1, No 1, Fall 2001.
[10] S. Chakrabarti and A. Mishra, “QoS Issues in Ad Hoc Wireless Networks," IEEE Communications Magazine, pp. 142-148, February 2001.
[11] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage Problems in Wireless Ad-hoc Sensor Networks,” in proceedings of IEEE Infocom, 2001, pp. 1380-1387
[12] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, "Exposure in Wireless Ad-hoc Sensor Networks," in Mobile Computing and Networking, 2001, pp. 139-150.
[13] R. Iyer and L. Kleinrock, “QoS Control for Sensor Networks,” in ICC 2003, May 2003.
[14] S. Tilak, N. Abu-Ghazaleh and W. Heinzelman, “A taxonomy of wireless micro-sensor network communication models,” ACM Mobile Computing and Communication Review(MC2R), June 2002. [15] Narendra K. S., Thathachar M. A. L.; "Learning automata: An introduction"; Prentice Hall, 1989.
[16] Narendra K.S., Thathachar M. A. L. "Learning automata a survey"; IEEE Transactions on Systems, Man and Cybernetics, vol. 4, no. 4, July 1974.
[17] Mance, E., and Stephanie, S., H., "Reinforcement learning: A tutorial," Wright Laboratory, 1996.
[18] Sutton, R. S., and Barto, A.G.; "Reinforcement learning: Introduction"; MIT Press, 1998. [19] Lakshmivarahan S., Thathachar M. A. L.; "Absolutely expedient learning algorithms for stochastic automata"; IEEE Transactions on Systems, Man and Cybernetics, vol. 6, pp. 281-286, 1973.
[20] Mars, P., Chen, J. R., and Nambiar, R., Learning algorithms theory and applications in signal processing, control and communications, CRC Press, 1996.
[21] Lakshmivarahan S.; "Learning algorithms: theory and applications"; New York: Springer-Verlag, 1981. [22] Lakshmivarahan S., Thathachar M. A. L.; "Optimal non-linear reinforcement schemes for stochastic automata"; Information Science, vol. 4, pp. 121-128, 1982. [23] Lakshmivarahan S., Thathachar M. A. L.; "Absolute expediency of Q and S-model learning algorithm"; IEEE Transactions on Systems, Man and Cybernetics, vol. 6, pp. 222-226, 1976.
[24] Viswanathan R., Narendra K. S.; "Expedient and optimal variable structure stochastic automata"; Technical report CT-31, Dunham Lab., Yale University, New Haven, Connecticut, U.S.A., April 1970.
[25] Mason L.G.