Contents & References of Cluster optimization using evolutionary algorithms for web personalization
List:
Summary.. 1
The first chapter. 2
1-1-Introduction. 3
1-2- Problem definition. 4
1-3-The importance and necessity of research. 5
1-4- Research method. 8
1-5- thesis framework. 8
References.. 10
The second chapter:. 11
2-1-Introduction. 12
2-2- Focus on the work done. 12
References.. 21
The third chapter:. 24
3-1-Introduction. 25
3-2-stages of web mining. 26
3-2-1-types of web browsing. 27
3-3-web personalization. 28
3-3-1-reasons for the need to personalize the web. 28
3-3-2-steps of web personalization. 29
3-3-2-1-data collection. 30
3-3-2-2- Data processing. 31
3-3-2-3- pattern discovery. 31
3-3-2-4-Knowledge analysis. 31
3-3-3-User modeling techniques in web personalization. 31
3-3-3-1-tf-idf technique. 32
3-3-3-2-meta model technique and OLAP tool. 32
3-3-3-3-technique based on web content. 33
3-3-3-4-technique based on providing effective data (ODP). 34
3-3-3-5-web personalization using combined methods. 34
3-3-3-6-web personalization based on inductive algorithm and tf-idf technology. 35
3-3-3-7- web personalization using sequential pattern mining and pattern tree. 35
3-4-Clustering for web personalization. 35
3-4-1- Fuzzy clustering. 36
3-4-1-1-basic fuzzy clustering algorithm. 36
3-4-1-2- Ka-Means fuzzy algorithm. 36
3-4-1-3-clustering web pages using k-means fuzzy clustering. 37
3-4-2-genetic algorithm. 39
3-4-2-1-optimization of fuzzy clustering using genetic algorithm. 40
3-4-3-Proposed method in this research. 42
3-4-4-Overview of the proposed system. 42
3-4-5-an example of the proposed system. 43
3-4-6-pseudo code of the proposed method. 50
3-5-Conclusion. 51
References.. 53
Chapter Four:. 55
4-1-Introduction. 56
4-2-data collection. 56
4-2-1- YANDEX Dataset. 57
4-2-1-1-Preprocessing done with raw data sets before publishing. 57
4-3-Evaluation parameters. 60
4-4- Tests performed. 61
4-4-1-Used hardware. 62
4-4-2-Test results. 62
4-5-Conclusion. 64
References:.. 65
Chapter Five:. 66
5-1-Introduction. 67
5-2-Results and achievements of the project. 68
5-3-Proposals. 68
References.. 70
Source:
[1]. Anand, S. S., & Mobasher, B. (2003, August). Intelligent techniques for web personalization. In Proceedings of the 2003 international conference on Intelligent Techniques for Web Personalization (pp. 1-36). Springer-Verlag.
[2]. Baeza-Yates, R. (2004, January). Web mining in search engines. In Proceedings of the 27th Australasian conference on Computer science-Volume 26 (pp. 3-4). Australian Computer Society, Inc.
[3]. Bharat, K., Chang, B. W., Henzinger, M., & Ruhl, M. (2001). Who links to whom: Mining linkage between web sites. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on (pp. 51-58). IEEE.
[4]. Chakrabarty, S. (2000). Data mining for hypertext: A tutorial survey. ACM SIGKDD Explorations Newsletter, 1(2), 1-11.
[5]. Chakrabarti, S., Dom, B. E., Kumar, S. R., Raghavan, P., Rajagopalan, S., Tomkins, A., & Kleinberg, J. (1999). Mining the Web's link structure. Computer, 32(8), 60-67.
[6]. Devi, B. N., Devi, Y. R., Rani, B. P., & Rao, R. R. (2012). Design and Implementation of Web Usage Mining Intelligent System in the Field of e-commerce. Procedia Engineering, 30, 20-27.
[7]. Eirinaki, M., & Vazirgiannis, M. (2003). Web mining for web personalization. ACM Transactions on Internet Technology (TOIT), 3(1), 1-27.
[8]. Varghese, N. M., & John, J. (2012, October). Cluster optimization for enhanced web usage mining using fuzzy logic. In Information and Communication Technologies (WICT), 2012 World Congress on (pp.948-952). IEEE.
[1]. Acharyya, S., & Ghosh, J. (2003, August). Context-sensitive modeling of web-surfing behavior using concept trees. In Proc. of the WebKDD Workshop on Web Mining and Web Usage Analysis (pp. 1-8).
[2]. Aghabozorgi, S. R., & Wah, T. Y. (2009, December). Using incremental fuzzy clustering to web usage mining. In Soft Computing and Pattern Recognition, 2009. SOCPAR'09. International Conference of (pp. 653-658). IEEE.
[3]. Baraglia, R., & Palmerini, P. (2002, April). Suggest: A web usage mining system. In Information Technology: Coding and Computing, 2002. Proceedings. International Conference on (pp. 282-287). IEEE. Britos, P., Martinelli, D., Merlino, H., & Garc?a-Mart?nez, R. (2007). Web usage mining using self organized maps. IJCSNS, 7(6), 45. [4]. Banerjee, S., & Pedersen, T. (2003, August). Extended gloss overlaps as a measure of semantic relatedness. In IJCAI (Vol. 3, pp. 805-810).
[5]. Dai, H. K., & Mobasher, B. (2002). Using ontologies to discover domain-level web usage profiles. Semantic Web Mining, 35. [6]. Eirinaki, M., Vazirgiannis, M., & Varlamis, I. (2003, August). SEWeP: using site semantics and a taxonomy to enhance the Web personalization process. In Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 108-99). ACM.
[7]. Etminani, K., Akbarzadeh-Totonchi, M. R., & Yanehsari, N. R. (2009). Web Usage Mining: users' navigational patterns extraction from web logs using ant-based clustering method. In IFSA/EUSFLAT Conf. (pp. 396-401).
[8]. Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations Newsletter, 2(1), 1-15.
[9]. Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. WordNet: An electronic lexical database, 49(2), 265-283.
[10]. Lieberman, H., Van Dyke, N., & Vivacqua, A. (1999). Let's browse: a collaborative browsing agent. Knowledge-Based Systems, 12(8), 427-431. [11]. Magnini, B., & Strapparava, C. (2004). User modeling for news web sites with word sense based techniques. User Modeling and User-Adapted Interaction, 14(2-3), 239-257.
[12]. Maratea, A., & Petrosino, A. (2009, November). An heuristic approach to page recommendation in web usage mining. In Intelligent Systems Design and Applications, 2009. ISDA'09. Ninth International Conference on (pp. 1043-1048). IEEE.
[13]. Markov, Z., & Larose, D. T. (2007). Data mining the Web: uncovering patterns in Web content, structure, and usage. John Wiley & Sons.
[14]. Masseglia, F., Poncelet, P., & Cicchetti, R. (2000). An efficient algorithm for web usage mining. Networking and Information Systems Journal, 2(5/6), 571-604. [15]. Minio, M., & Tasso, C. (1996, January). User modeling for information filtering on internet services: Exploiting an extended version of the umt shell. In UM96 Workshop on User Modeling for Information Filtering on the WWW (pp. 2-5).
[16]. Miranda, T., Claypool, M., Gokhale, A., Mir, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. In Proceedings of ACM SIGIR Workshop on Recommender Systems. [17]. Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on Web usage mining. Communications of the ACM, 43(8), 142-151. [18]. Mobasher, B., Dai, H., Luo, T., Sun, Y., & Zhu, J. (2000). Integrating web usage and content mining for more effective personalization. In Electronic commerce and web technologies (pp. 165-176). Springer Berlin Heidelberg.
[19]. Nasraoui, O.