Contents & References of Extraction of appropriate features for EEG voluntary movement signals detection
List:
Chapter One.
Introduction.
1-1- Introduction. 1
1-2- History of BCI 4
1-3- Applications of BCI 7
1-4- Problem definition. 7
1-5 - thesis structure. 7
Chapter Two
Brain signals.
2-1- Introduction. 9
2-2- Discovery of brain signals. 10
2-3- Recording brain signals. 11
2-4- Pre-processing on brain signals. 12
Chapter Three
A review of the research done in the field of classification of brain signals
3-1- Introduction. 16
3-2- Introducing the available data. 17
3-2-1- Data specifications recorded by the University of Colorado group. 17
3-2-2- Details of the data recorded by Graz Group. 18
3-2-3- Specifications of MIT-BIH data. 19
3-3- feature extraction. 20
3-4- Classification. 23
Chapter four.
Analytical comparison of Fourier transform, Mojak and Walsh
4-1- Introduction. 25
4-2- Fourier transform. 25
4-3- Wavelet transform. 30
4-3-1- scale. 32
4-4- The history of Walsh conversion. 35
4-4-1- Walsh functions. 35
4-4-2- Walsh conversion. 36
Chapter Five
Description of the proposed method
5-1- Introduction. 40
5-2- Database used 40
5-3- Noise removal. 42
5-3-1- Analysis of independent components. 43
5-3-2- Noise removal using independent component analysis. 44
5-3-3- noise removal using wavelet transform. 46
5-3-4- Noise removal using Walsh transform. 47
5-3-5- noise removal using the combined method of Walsh transform and ICA. 50
5-4- feature extraction. 51
5-4-1- Entropy. 52
5-4-2- feature extraction using Walsh transform. 53
5-4-3- feature extraction using Fourier transform and wavelet. 53
5-5- Support Vector Machine 54
5-5-1- Separator super plane. 55
5-5-2- Non-linear separation. 58
Sixth chapter
Results and conclusions.
6-1- Introduction. 60
6-2- noise removal. 61
6-3- Evaluation criteria. 65
6-3-1- Signal to Noise Rate 65
6-3-2- Mean Square Error 66
6-3-3- Percentage Root Mean Square Difference 67
6-4- Feature extraction. 68
6-4-1- Characteristics of Walsh transform. 69
6-4-2- Characteristics of Fourier transform. 72
6-4-3- characteristics of wavelet transformation. 76
6-5- Comparison with related works on this dataset 80
6-6- Conclusion. 83
6-7- Suggestions 85
Resources:. 86
Source:
[1] .Melody M. Moore, 'Real-World Applications for Brain–Computer Interface Technology', IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 11, NO. 2, JUNE 2003.
[2] . J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. G. McFarland, P. H. Peckhom, G. Schalk, E. Donchin, L. A. Quaterano, C. J. Robinson, T. M. Vaughan, “Brain–Computer Interface Technology : A Review of the First International Meeting”, IEEE Trans. Rehab. Eng., vol. 8, No. 2, pp. 164-173, June 2000. [3] . R. Elul, "Gaussian Behavior of the Electroencephalogram: Changes during performance of Mental Task", Science, vol. 164, pp. 338-331, April 1969. [4] Z. A. Keirn, J. I. Aunon, "A New mode of Communication between Man and his Surroundings", IEEE Trans. Biomed. Eng., vol. 37, no. 12, pp. 1209–1214, 1990. [5] . C. W. Anderson, E. A Stolz, S. Shamsunder, "Multivariate Autoregressive Models for Classification of Spontaneous Electoencephalographic Signals During Mental Tasks", IEEE Trans.Biomed. Eng., vol. 45, No. 3, pp. 277-286, March 1998. [6] C. Anderson and Z. Sijercic, "Classification of EEG Signals from Four Subjects during Five Mental Tasks", in Solving Eng. Problems with Neural Networks: Proc. Conf. on Eng.
Applicationsin Neural Networks (EANN'96), PL 34, pp. 407-414, Finland 1996. [7] G. Pfrutcheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A.Schlogl, B. Dbermaier, M. Pregenzer, “Current Trends in Graz Brain–Computer Interface (BCI) Research”, IEEE Trans.Rehab. Eng., vol. 8, No. 2, pp. 216-218, June 2000. [8] G. Pfrutcheller, C. Neuper, A. Schlogl, K. Lugger, "Separability of EEG Signals Recorded During Right and Left Motor Imagery Using Adaptive Autoregressive Parameters", IEEE Trans. Rehab. Eng., vol. 6, pp. 316-325, September 1998. [9] . A. Schloegl, C. Neuper, G. Pfrutcheller, "Subject Specific EEG Patterns During Motor Imaginary", in Proc. 19th Inter. Conf., IEEE/EMBS, Chicago 1997, pp. 1530-1532.
[10] . A. L. Schloegl, K. Lugger, G. Pfurtscheller, “Using Adaptive Autoregressive Parameters for a Brain Computer Interface Experiment”, Proc. 19th Int. Conf. IEEE/EMBS, Chicago, IL. USA, 1997, pp. 1533-1535.
[11] . A. Schlogl, S. J. Roberts, G. Pfrutcheller, "A criterion for adaptive autoregressive models", in Proc. 22nd Annu. Inter. Conf. IEEE/EMBS, vol. 2, pp. 1581-1582, 2000. [12] J. R. Wolpaw, H. Ramaser, D. J. McFarland, G. Pfrutcheller, “EEG–Based Communication: Improved Accuracy by Response Verification”, IEEE Trans. Rehab. Eng., vol. 6, No. 3, pp. 326-333, September 1998. [13] . S. Baillet, J. C. Mosher, R. M. Leahy, “Electromagnetic Brain Mapping”, IEEE Signal Processing, vol. 18, no. 6, pp. 14-30, November 2001.
[14] . Who named it?, http://www.whonamedit.com/doctor.cfm/845.html.
[15] . The History of Medicine: http://www.medhelpnet.com/medhist7.html, 1901-1925.
[16] .Biocybernaut,Institute,EEG-ElectroEncephaloGraph,http://biocybernaut.com/tutorial/ eeg.html.
[17] . D. G. Domenick, “International 10-20 Electrode Placement System for Sleep”, http://members.aol.com/aduial/20-10sys.html.
[18] . http://dragon.inha.ac.kr/~neurolee/eeg/eeg_eng.htm, EEG (Electroencephalogram)
[20] . Berg P., & Scherg M, 'Dipole models of eye activity and its application to the removal of eye artifacts from the EEG and MEG'., Clinical Physics and Physiological Measurements, 12 (Supplement A), pp 49-54, 1991.
[21] . Lagerlund T. D., Sharbrough F. W., & Busacker, N. E., 'Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition'. Journal of Clinical Neurophysiology, 14, 73–82, 1997. [22] Makeig S., Bell A. J., Jung T. -P., Sejnowski T. J., 'Independent component analysis of electroencephalographic data. In Advances in neural information processing systems', D. Touretzky, M. Mozer, & M. Hasselmo Eds., Vol. 8, pp. 145–151. Cambridge, MA: The MIT Press, 1996.
[23] . Vorobyov S., Cichocki A., 'Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis'. Biological Cybernethics, Springer-Verlag 86, pp 293-303, 2002.
[24] . Zhou W., Gotman J., 'Removal of EMG and ECG Artifacts from EEG Based on Wavelet Transform and ICA.'Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, USA pp 392-395, 2004.
[25] . Melody M.