Contents & References of Presenting the migration scheduling algorithm of virtual machines to simultaneously optimize energy consumption and pollutant production in the cloud computing network
List:
Abstract.. 1
Introduction.. 2
Chapter 1 - General
Introduction.. 5
Overview of cloud computing. 5
1-2-1- Examining different types of cloud masses, application, advantages and disadvantages. 9
1-2-2- Some advantages and disadvantages of cloud computing. 12
1-2-3- Architecture of cloud computing systems. 13
1-2-4- The nature of cloud computing. 14
Virtualization.. 14
An introduction to the migration of virtual machines. 19
1-4-1- Migration.. 19
1-4-2- Types of live migration methods. 20
Genetic algorithm.. 21
1-5-1- Genetic population. 22
1-5-2- fitness function. 23
1-5-3- combination or displacement operator. 23
1-5-4- Mutation operator. 24
1-5-5- selection operator. 24
Familiarity with the upcoming challenge in the cloud computing network. 25
Summary and conclusion.. 27
Chapter 2- Review of past literature
2-1- Cloud computing.. 29
2-2- Virtualization.. 30
2-3- Energy management in IDC Internet data center. 31
2-4- virtual machine energy management and migration. 32
2-5- MBFD algorithm. 37
2-6- ST algorithm.. 39
2-7- MM algorithm.. 39
2-8- Harisane algorithm. 41
2-9- MEF algorithm (change of first fit). 42
2-10- Conclusion.. 43
Chapter 3- Presentation of the proposed algorithm
3-1- Introduction.. 45
3-2- The proposed algorithm. 45
Chapter 4- Simulation results
4-1- Introduction.. 55
4-2- Simulation features of allocation and migration of virtual machines. 55
4-3- MATLAB software.. 59
4-4- Simulation results. 61
4-5- Conclusion.. 66
Chapter Five- Conclusion and Suggestions
5-1- Conclusion.. 68
5-2- Future work.. 68
Source:
[1]A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy.” Optimal Power Allocation in Server Farms", in proc: The Eleventh International Joint Conference on Measurement and Modeling of Computer Systems, pp:157-168, 2009.
[2]A. Weiss. "Computing in the Clouds. networker”, ACM Press, vol 11, pp:16-25, 2007.
[3] A.Bloglazov, R.Buyya,” Adaptive Threshold-Based Approach for Energy-Efficient Consolidation of Virtual Machines in Cloud Data Centers”, In Proc: 8th International Workshop on Middleware for Grids, Clouds and e-Science, No 4, 2010
[4] Amazon Elastic Compute Cloud (EC2), http://www.amazon.com/ec2/, July 2008.
[5] Azure Service Platform, Microsoft Corporation, http://www.microsoft.com/azure/services.mspx
[6] Azure Service Platform, Wikipedia, http://en.wikipedia.org/wiki/Microsoft_Azure
[7] B. Lin, , and P. A. Dinda, "Mixing Batch And Interactive Virtual Machines Using Periodic Real-time Scheduling". In Proc: the 2005 ACM/IEEE Conference on Super-Computing, pp:1-8, 2005.
[8]B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster, “Virtual Infrastructure Management in Private and Hybrid Clouds”, In Proc: IEEE Internet Computing, pp: 14-22, 2009.
[9]C. L. Karr and L.M. Freeman, "Industrial Applications of Genetic Algorithms", CRC Press, 1999.
[10]C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, M. Rosenblum, "Optimizing the Migration of Virtual Computers". In Proc: the 5th Symposium on Operating Systems Design and Implementation (OSDI), vol 36, pp:377-390, 2002.
[11]C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S. Lam, and M. Rosenblum, "Optimization the Migration of Virtual Computers", In Proc: 5th USENIX Symposium on Operating Systems Design and Implementation (OSDI-02), vol 11, pp:377-390, 2002.
[12] C. Scheffy, “Virtualization For Dummies”, Amd Special Editors, Publisher: Wiley, ISBN: 978-0-470-14831-0, 2007.
[13] D. Meisner, B. T. Gold and T. F. Wenisch, "PowerNap: Eliminating Server Idle Power", In Proc: Architectural Support for Programming Languages ??and Operating Systems (ASPLOS), pp:205-216, 2009.
[14]D. Nurmi, R. Wolski, C.Grzegorczyk, G. Obertelli, S. Soman, L. Youseff and D. Zagorodnov, "The Eucalyptus Open-Source Cloud-computing System". In Proc: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid(CCGRID), pp: 124-131, 2009.
[15] D. Ongaro, A. L . Cox, and S. Rixner," Scheduling I/O in Virtual Machine Monitors", In Proc: ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp:1-10, 2008.
[16]E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. Westall, "The Efficacy of Live Virtual Machine Migrations Over the Internet", in proc: Second International Workshop on VirtualizationTechnology in Distributed Computing, 2007.
[17] F.M. Aymerich, G. Fenu, S. Surcis, "An approach to a Cloud Computing Network, Applications of Digital Information and Web Technologies", First International Conference ICADIWT, pp:113-118, 2008.
[18]G. Dhiman, G. Marchetti and T. Rosing, "vGreen: A System for Energy-Efficient Management of Virtual Machines", Journal of Transaction on Design Automation of Electronic System, Vol. 16, pp:6-32, 2010.
[19]G. Lovasz, F. Niedermeier and H. De Meer.” Performance Tradeoffs of Energy-Aware Virtual Machine Consolidation”, Cluster Computing Journal, Vol 15, pp: 36-42, 2012.
[20]Google App Engine, http://appengine.google.com
[21]H. Kim, H.Lim, J. Jeong, H. Jo, and J. Lee, "Task-aware Virtual Machine Scheduling for I/O Performance", In Proc: ACM SIGPLAN / SIGOPS International Conference on Virtual Execution Environments, pp: 101-110, 2009.
[22] Goiri, F. Julià, R. Nou, J.L. Berral, J. Guitart, J. Torres, "Energy-Aware Scheduling in Virtualized Datacenters", IEEE International Conference on Cluster Computing, pp:58-67, 2010.
[23] I. Menken, G. Blokdijk, "Cloud Computing Virtualization Specialist Complete Certification Kit" Publisher: Emereo, ISBN: 9781921644047 , 2008.
[24]J. Baliga, R. Ayre, K. Hinton, R.S. Tucker, "Green Cloud Computing: Balancing Energy in Processing, Storage and Transport", in proc: IEEE Press, vol 99, pp: 149-167, 2011.
[25]J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. "Managing Energy and Server Resources in Hosting Servers". In Proc: Symposium on Operating Systems Principles (SOSP), pp:103-116, 2001.
[26]J. Heo, D. Henriksson, X. Liu, T. Abdelzaher, "Integrating Adaptive Components: An Emerging Challenge in Performance-Adaptive Systems and a Server Farm Case-Study," in proc:the 28th IEEE Real-Time Systems Symposium (RTSS), pp:61-72, 2007.
[27] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, "Making Scheduling Cool: Temperature-Aware Workload Placement in Data Center". In Proc: USENIX Annual Technical Conference, pp:5, 2005.
[28]J. Stoess, C. Lang and F. Bellosa. "Energy Management for Hypervisor-Based Virtual Machines". In Proc: USENIX Annual Technical Conference, pp:54-60, 2007
[29]J. Stoess, C. Lang, F. Bellosa, “Energy Management for Hypervisor-Based Virtual Machines”, in Proc the USENIX Annual Technical Conference, pp: 1–14, 2007.
[30]J. Stoess, C. Lang, F. Bellosa, “Energy Management for Hypervisor-Based Virtual Machines”, in proc: the USENIX Annual Technical Conference, pp: 1–14, 2007.
[31]K. H. Kim, R. Buyya, J. Kim, "Power-Aware Scheduling of bag-of-Tasks Applications with Deadline Constraints on DVS-enabled Clusters", In Proc: IEEE International Symposium on Cluster Computing and the Grid(CCGRID), pp:541-548, 2007.
[32]K. Singh, M. Baduria and S.A. McKee. "Real Time Power Estimation and Thread Scheduling via Performance Counters", ACM SIGARCH Computer Architecture News,Vol37,pp:46-55, 2008.
[33]K.H. Kim, A. Beloglazov, R. Buyya," Power-Aware Provisioning of Cloud Resources for Real-Time Services", in Proc: the 7th International Workshop on Middleware for Grids, Clouds and e-Science, vol 23, pp:1492-1505, 2009. [34] L. A.